


Spencer Chan (Eliot ‘12), Staff Software Engineer

Tommy MacWilliam (Mather ‘13), Engineering Manager

Vanessa Tan (Eliot ‘14), Engineering Manager

Interviewing
Crash Course



Choosing 
Companies



● What are you looking for out of an internship / full-time job?

● Would you be excited to get up every day and work on the product?

● Would you be excited to get up every day and work with the people?

● Do the things you value align with what the company values?

● How big is the company?

Questions to ask yourself



● What are you looking for out of an internship / full-time job?

○ Impact? 

○ Learning?

○ Work-life balance?

○ Location?

○ Money?

● Everyone is different

Questions to ask yourself



● What are you looking for out of an internship / full-time job?

● Would you be excited to get up every day and work on the product?

● Would you be excited to get up every day and work with the people?

● Do the things you value align with what the company values?

● How big is the company?

Questions to ask yourself



● Would you be excited to get up every day and work on the product?

○ Use the product!

○ Learn more about the company’s mission

Questions to ask yourself



● What are you looking for out of an internship / full-time job?

● Would you be excited to get up every day and work on the product?

● Would you be excited to get up every day and work with the people?

● Do the things you value align with what the company values?

● How big is the company?

Questions to ask yourself



● Would you be excited to get up every day and work with the people?

○ Ask questions to your interviewers

○ If you have an offer, ask to talk to people

Questions to ask yourself



● What are you looking for out of an internship / full-time job?

Would you be excited to get up every day and work on the product?

● Would you be excited to get up every day and work with the people?

● Do the things you value align with what the company values?

● How big is the company?

Questions to ask yourself



Questions to ask yourself

● Each company has a different set of values

○ Things that the company values more than other companies

● Quora’s values

○ Mission-First

○ Drive

○ Agility

○ Awareness

○ Pragmatism



● What are you looking for out of an internship / full-time job?

○ Impact? Learning? Work-life balance? Location? Money?

● Would you be excited to get up every day and work on the product?

● Would you be excited to get up every day and work with the people?

● Do the things you value align with what the company values?

● How big is the company?

Questions to ask yourself





Resumes



Not that important



?



30 seconds



Resume Rules

● One page. No exceptions.

● Make it easy to skim: where have you worked?

● Contact information should be the easiest thing to find.

● Highlight specific accomplishments from past internships.

● Include interesting personal projects.



Resume Rules

● No charts or ratings next to skills.

● You don’t need an objective. We know references are available upon request.

● If you don’t already have a professional-looking email address, create one.

● Include relevant links like LinkedIn, GitHub, etc.







Types of Interviews



● Start interviewing as early as you can

○ Common for interns and full-time to interview in late summer / early fall

○ Some students even interview for summer i + 1 during summer i 

● Plan interviewing into your semester schedule

○ It takes a lot of time

● Look for programs targeted to your year

○ Some larger companies have programs geared towards first-year CS 

students

Logistics



● Some companies start with an online coding challenge (~30 minutes)

● Technical phone screen (45–60 minutes)

● Onsite portion (3–5 interviews, 45–60 minutes each)

○ Might meet with engineers, design, PM, etc.

Logistics



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● Problems that are more about getting the algorithm than actually coding it up

○ Actual code is straightforward / simple, but problem is hard

● Try to optimize both time and space complexity

○ OK to start with a naive solution, then optimize

○ If the solution seems too complicated, it probably is

● We’ll go into much more detail later!

Algorithms



● Common classes of algorithms problems:

Algorithms



● Common classes of algorithms problems:

○ Strings

○ Recursion

○ Dynamic Programming

○ Graphs, Trees

○ Math

Algorithms



● Tools for solving problems:

○ Arrays, linked lists

○ Hash tables

○ Shortest path algorithms (e.g., BFS, A*)

○ Built-in string methods

○ Memoization

Algorithms



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● Problem is simple, but implementation is more complex

● Decompose the problem: code quality is important

○ Create helper functions appropriately

○ Can you make the code even simpler?

● Familiarity with language helps a lot (more on this later)

Coding



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● Given an existing (large) codebase, make changes to it

○ Very different than implementing something from scratch!

● Take the time to understand how parts of the codebase fit together

○ Might spend more time reading than writing

● Be familiar with some development environment (e.g., breakpoints)

● Use stack traces as a tool to see the call stack (e.g., throw an exception)

Practical



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● Not as common for interns and new grads

● Technical design

○ “How would you architect the Gmail app?”

● Product design

○ “What feature is missing from Gmail?”

Systems Design



● Understand the constraints of the system

● Be aware of what assumptions you’re making

● Think about the consequences of each decision you make

● Challenge your own ideas—when do they break?

● Consider how future-proof your design is

○ Does it break with more users? More developers?

Systems Design



● Algorithms

● Coding

● Practical

● Systems Design

● Culture

Types of Interviews



● How do your values align with the values of the company?

○ Questions will vary based on what the company values

● Interviewers get signal by talking about your experiences

○ Looking back

○ Looking forward

Culture



● Looking back (e.g., past internships, projects)

○ What went well, and what didn’t?

○ What were the hardest challenges you faced? How did you overcome 

them?

○ What would you have done differently with the benefit of hindsight?

Culture



● Looking forward (e.g., your next job)

○ Why this company?

○ What do you want to work on?

○ What are your short-term and long-term goals?

○ What are important parts of a culture to you?

Culture



Culture

● Take some time to reflect

○ What does your ideal day look like?

● Avoid being overly negative about the past

○ What if you were to be overly negative at this job?

● If you’re under an NDA, that’s fine—just say so



Interview Prep



Long Term

● Do more interviews

● Spend more time programming

● Take CS124



Short Term

● Practice the basics



Practice the basics (in your language of choice)

● How do you:

○ define a class?

○ insert/remove things from a linked list?

○ BFS/DFS a tree?

○ initialize/print/sort an array?

○ use a hash table?



Practice the basics (in your language of choice)

● If you have these down cold, you can worry less about 

them and focus on problem solving

● As you do practice problems (from your friends, from the 

internet, from a book, from past interviews), look for 

common things 



Short Term

● Practice the basics

● Practice a variety of problems



Build Your Toolbox

● Find practice questions on a variety of topics

○ Recursion / Dynamic Programming / Complexity

○ Trees / Graphs

● Learn a variety of data structures

○ Not just how they work, but when to use them and 

which ones apply to similar situations

● Will give you more ideas to consider when approaching 

problems



Anatomy of the 
Interview



the preamble



Intros & Resumes

● You might be asked about a past internship, research, or a project
○ If anything is on your resume, you should be able to explain it

● Keep it short



the technical problems



Why algorithms?

● Knowledge of data structures & algorithms is a common denominator for 
CS students

● An imperfect proxy to evaluate problem-solving skills



What to expect

● At least 1 coding problem focusing on data structures and algorithms
● You will need to:

○ Explain your approach and its correctness
○ Analyze time and space complexity of your solution
○ Write clean code in an editor or on a whiteboard

■ Usually in the language of your choice
○ Test your code and iterate on it



mock interview



When given a problem statement

● Always tell your interviewer if you’ve seen the problem before!
● Make sure you understand the problem

○ Don’t make any assumptions. 
■ When in doubt, ask if you are allowed to assume something

○ Ask clarifying questions
○ Verify that you agree on a desired output for a test input



Brainstorming approaches

● Your process is more important than your output
● Talk through multiple approaches
● Draw diagrams or run through test cases
● At a high level, explain your chosen approach and reasoning

○ Convince your interviewer this will work (efficiently)



Writing code

● Your process is more important than your output
● Communicate your progress clearly and out loud
● Code quality matters

○ Should be understandable, not just correct
○ Break up your logic into helper functions where appropriate
○ Don’t name your variables foo, bar and baz
○ If at a whiteboard: talk to your interviewer explicitly about this



mock interview pt. II



Coding on a Computer

● Dilemma:

○ It's really hard to get code to run correctly the first 

time

○ If you test every line of your code as you write it, it 

takes forever and looks bad

● A good balance:

○ break your code into helper functions and test them



Debugging on a Computer

● Same dilemma

○ Don't stare at your code

○ Don't make random changes and rerun

○ Run your code when you think it will be helpful

● Have a systematic approach

○ Divide and conquer



Coding/Debugging on a Whiteboard

● This is different, practice it too (ask which one you should 

expect)

○ Watch out for running out of space

○ Refactoring or reordering lines will be hard

○ Get good at debugging by stepping through code in 

your head



Final tips

● It’s better to over-communicate than under-communicate
● Listen carefully to your interviewer for hints/cues
● Solving problems well and writing good code are necessary but not 

sufficient for being a successful interviewee



the closing



Asking questions

● Think of this as a reverse interview - make the most of it
● Things you might want to hear about:

○ Company culture
○ Learning and growth opportunities
○ Types of problems you’d be working on
○ Personal paths of engineers you meet



After the Interview



Learning from interviews

● Understand that interview performance can be high variance[1]

● View every interview as a chance for realistic practice
● Don’t get discouraged

[1]https://blog.interviewing.io/technical-interview-performance-is-kind-of-arbi
trary-heres-the-data/ 

https://blog.interviewing.io/technical-interview-performance-is-kind-of-arbitrary-heres-the-data/
https://blog.interviewing.io/technical-interview-performance-is-kind-of-arbitrary-heres-the-data/
https://blog.interviewing.io/technical-interview-performance-is-kind-of-arbitrary-heres-the-data/


Q&A



cs50.ly/quora


