Review for Test

October 12, 20716

Info
http://docs.cs50.net/2016/fall/test/about.html

e /2 hour window in which to take the test.
* You should require much less than that.

e Released Fri 10/14 at noon, due via submit50 Mon 10/17

at noon.
* Be sure to run update50 in your IDE before submitting!

o« SubmMitting seven minutes late is equivalent to not submitting at
all: don’t wait until the last possible second.

Resources

« Consult the syllabus for a guide of topics.
« We'll run through everything at a very high level today.

e Review |lecture notes.
e Review lecture source code.
e Review lecture slides.

 (Re)watch lecture videos.

* Review problem set specifications, distribution code, and
postmortems.

Resources

« Office hours
 Today (Wednesday) at HSA through 5pom.
 Tonight in Widener from 9pm - Tlom.
 Thursday at HSA from 10am - 5:15pm.
 Thursday night in SOCH from 9om - 11pm.

Resources

« Office hours
 Today (Wednesday) at HSA through 5pom.
 Tonight in Widener from 9pm - Tlom.
 Thursday at HSA from 10am - 5:15pm.
 Thursday night in SOCH from 9om - 11pm.

« No office hours during the Test (10/14 through 10/17).

« No office hours during Coding Contest (10/17 through
10/22).

Resources

e CS50 Discuss

* You may post questions through Thu 10/13.

« You may not post guestions on Discuss from Fri 10/14 through
Mon 10/17.

« Staff will not respond to any guestions during this time, but will monitor
the forum.

Resources

e CS50 Discuss

* You may post questions through Thu 10/13.

« You may not post guestions on Discuss from Fri 10/14 through
Mon 10/17.

« Staff will not respond to any guestions during this time, but will monitor
the forum.

 The only humans to which you may turn for help during
the Test are the course’s heads.

Resources

e CS50 Quiz Bank

* Available at quizbank.cs50.net.
 No login required.

* Archive of old quiz guestions from 200/—15, searching by topic
and keyword.

« Test this year will take a different format from years past, but
the content being asked about does not differ widely.

Week O

e Binary
e Digits: O, 1
 Place values: 1s, 2s, 45, 8s, 16s...

Week O

e Binary
e Digits: O, 1
 Place values: 1s, 2s, 45, 8s, 16s...

« ASCII

« Uniform standard for mapping of numbers to characters.
« 'AIs5, ‘a’ 1s97/...

Week O

e Binary
e Digits: O, 1
 Place values: 1s, 2s, 45, 8s, 16s...

o« ASCII
« Uniform standard for mapping of numbers to characters.
« 'AIs5, ‘a’ 1s97/...
e Bytes
 The value of a byte is context-dependent.
« Maybe that 65 is just a 65.

* In Microsoft Word that 65 might indeed be an ‘A.

* In Photoshop that 65 might represent the red value of a
oarticular pixel.

Week O

* Algorithms
« Step by step sets of instructions for completing a task.
« Counting the class.
 Finding Mike Smith in a phone book.
« Correctness versus efficiency.

Week O

* Algorithms
« Step by step sets of instructions for completing a task.
« Counting the class.
 Finding Mike Smith in a phone book.
« Correctness versus efficiency.

e Scratch
« Basic blocks - control, data, sound, looks.
« Custom blocks - “functions”.
 Events - when

Week 1

* | O0OPS
 for - running a specific number of times.
* while - running an unknown number of times, possibly zero.
 do-while - running an unknown number of times, at least once.

Week 1

* | O0OPS
 for - running a specific number of times.
* while - running an unknown number of times, possibly zero.
 do-while - running an unknown number of times, at least once.

« Conditions
« Boolean expressions - true or false
e if else if, else
e switch
 Ternary operator - ?:

Week 1

* \Variables
 Containers that hold information.
 Before using, need to declare.

* Variables hold information of a specific type, and have a name.
« Use = to assign values to variables, right-to-left.

Week 1

* Variables
« Containers that hold information.
 Before using, need to declare.
* Variables hold information of a specific type, and have a name.
« Use = to assign values to variables, right-to-left.
« Compiling

* make is a utility we use to turn our C code into executable
orogrames.

* clang is a compiler that does the hard work of this translation.
« Computers only understand machine code, not our C source.
 Preprocessing, compiling, assembling, linking.

Week 1

 Data Types

* Native data types in C
* int, char, float, double, long long

« Additional data types
* bool, string
e signed and unsigned
* 1 byte
 bool, char
o 4 pytes
« float, int

« 8 bytes
* double, long long, string

Week 1

* Overflow
« With an integer, we only have 4 bytes (32 bits) to work with.
 We can’t store any number equal to or greater than 232

Week 1

* Overflow
« With an integer, we only have 4 bytes (32 bits) to work with.
 We can’t store any number equal to or greater than 232

e I[mprecision
 With a float, we only have 4 bytes (32 bits) to work with.
« We cannot possibly represent every real number.

Week 2

« Bugs
 Implicit declaration of functions.
« Use of undeclared identifier.
« Out of bounds error.
« Segmentation fault.
* help50, debugho.

Week 2

« BUgsS
 Implicit declaration of functions.
« Use of undeclared identifier.
« Out of bounds error.
« Segmentation fault.
* help50, debugho.

« Cryptography
 Art and science of obscuring information.
 Rotational cipher.

Week 2

e Strings
* A sequence of characters.

Week 2

e Strings
s A cocujonco ol charactors
« An array of characters.

* Length of a string is available via the function strlen.

 Each character of the string is available with str[i]
* @ <= 1 < strlen(str)

« All strings end with the \@ character.

Week 2

e Strings
s A cocujonco ol charactors
« An array of characters.

* Length of a string is available via the function strlen.

 Each character of the string is available with str[i]
* 0 <= i < strlen(str)

« All strings end with the \@ character.

Typecasting

 Think back to ASCII, every character is associated with a
numbper.

« \WWe can treat characters as numbers and do math with them
using their ASCI| values.

« Explicit typecasting uses a (type) specifier.

Week 2

e Reference Tools

« Manual pages are part of most Linux installations.
* reference.cs50.net is written by the staff.

« Many online equivalents for C and other languages.

Week 2

 Reference Tools
« Manual pages are part of most Linux installations.
* reference.cs50.net is written by the staff.

« Many online equivalents for C and other languages.

« Command-Line Arguments
« By modifying our prototype for main, the user can supply extra
information to our programs at runtime.

e int main(int argc, string argv[])
e argc refers to how many things the user typed.
e argv is an array of strings storing what they actually typed.

Week 3

« Searching

* Linear search considers a general array, and looks over each
element from beginning to end until it finds the target.

« Binary search considers a sorted array, looks at the middle, and
discards half of the remaining array until it finds the target.

Week 3

« Searching

* Linear search considers a general array, and looks over each
element from beginning to end until it finds the target.

« Binary search considers a sorted array, looks at the middle, and
discards half of the remaining array until it finds the target.

e Sorting
« Selection sort: Find the smallest remaining, swap with the first.
 Bubble sort: Adjacent pairs out of order? Swap them.
* Insertion sort: Shift previously sorted elements to make room.
« Merge sort: Sort partial arrays, then combine them together.

Week 3

* Big O
* Provides us with a shorthand way to refer to the running time of
various algorithms.
* In CS50, normally O describes the upper bound on runtime.

* In CS50, normally Q describes the lower bound on runtime.

Week 3

Algorithm

Upper bound (O)

Lower bound (Q)

L INnear search

Binary search

Selection sort

Bubble sort

INsertion sort

Merge sort

Week 3

e Recursion

 Problem solving technigue where we use the solution to a
smaller problem to inform the solution to a larger one.

* Series summation, factorial, exponentiation, Fibonacci
seguence...

* A recursive algorithm has two parts:

« Base case - recursion stops; the simple case we have a solution for

 Recursive case - recursion continues; make a more complex case a little
bit simpler, tending towards the base case.

Week 3

int fact(int n)

{

if (n <= 09)
return 1;
return n * fact(n-1);

int fact(int n)

{

int product = 1;
while (n > 0)
{

product *= n--;

}

return product;

Week 4

e Call Stack

« Swapping values in a separate function has no effect in the
calling function.

* Passing variables to a function gives that function its own local
copy of those variables; our original ones remain intact.

A function call creates a stack frame.

 The most recently called function is the one with the “highest”
frame on the stack, and is the only function active.

* All other functions are “on pause” where they left off.

Week 4

e Pointers
« How can we access memory in other functions?

 Pointers are addresses, specifically the addresses of variables
we care apbout.

 Finding a variable’s address: &

« Going to an address to manipulate a variable: *
« Dereferencing

Week 4

int main(void)

{

int x = 4;
int *px = &x;
*px = 5;
printf("%i\n"

» X);

Week 4

int main(void)

{
int x = 4;
change(x);
printf("%i\n", Xx);

Week 4

int main(void) void change(int *Xx)
{ {
int x = 4; *X = 5;
change (&x); return;
printf("%i\n", x); }

Week 4

e Strings Redux

 The variable name of a string is behind the scenes just a pointer
to (aka the address of) its first character.

e string s = "CS50";
e string t = "CS50";

Week 4

e Strings Redux
 The variable name of a string is behind the scenes just a pointer

to (aka the address of) its first character.
e string s = get string(); // user types "CS50"
e string t = get string(); // user types "CS50"

e Dynamic Memory
e If | need memory while my program is running that | didn’t
anticipate at compile-time, | can use malloc.

* malloc expects a number of bytes as a parameter, and gives you

back a pointer.
* sizeof is helpful here!

 Need to free all dynamically allocated memory.

Week 4

« VValgring
* Tool that we can use to spot memory leaks in our program.
* Tells about any invalid thing we do with program’s memory.

Week 4

* Valgrind
* Tool that we can use to spot memory leaks in our program.
* Tells about any invalid thing we do with program’s memory.

e« Buffer Overflow

* Integer overflow occurs when we try and store an integer larger
than we are capable of storing.

« Buffer overflow occurs when we try and store a string larger
than we've set aside space for.

« Can be used to malicious effect.

Week 4

e Structures

 C permits us to encapsulate data, by wrapping it up into a
structure.

 Group together related data into a single entity.

Dot operator to access a structure’s members.

* |f we have pointers to structures, we use arrow (->) instead of
dot, to dereference the pointer, then access the member.

« typedef to give us cleaner type names.

Week 4

struct student

{

char name[20];
char house[20];
int year;
float gpa;

Week 4

struct student

{

char name[20];
char house[20];
int year;
float gpa;

struct student maria;

strcpy(maria.name, "Maria");
strcpy(maria.house, "Cabot");
maria.year = 2018;

maria.gpa = 4.00;

Week 5

e | inked Lists

* Arrays suffer from a fixed-size limitation.
Lists grow and shrink with ease, but require dynamic memory.

Structure (node) with at least two members:

« Data
* A pointer to another structure in the same linked list (or to NULL).

Insertion and deletion can be constant time, O(1), operations.

Lookup/search is O(n), since we lose random access.
« Start at the beginning of the chain, and work your way to the end.
* Linear search.

Week 5

» Stacks
e LIFO (last in, first out)

* Linked list: You can only ever insert or delete from the head of
the list.

* Array: Keep track of most recently added element at all times.

Week 5

» Stacks
e LIFO (last in, first out)

* Linked list: You can only ever insert or delete from the head of
the list.

* Array: Keep track of most recently added element at all times.

 Queues
e FIFO (first in, first out)

* Linked list: You can only ever insert at the head of the list and
delete from the tail of the list.

* Array: Keep track of number of elements and “oldest” element
at all times.

Week 5

e [rees

« Node with normally at least three members:
 Data
« At least two pointers to other nodes lower in the tree (or to NULL)

Binary trees

Binary search trees

Tries

Insertion and deletion can be constant time, O(1), operations.
Lookup/search is OClog n) in a binary search tree.
Lookup/search is O(1) in a trie.

Week 5

* Hash tables
« Combination of a linked list and an array.
 Use a hash function to get a value for your data.
« Store in the linked list located at that index of the array.

