CS50
Dynamic Programming

Benedict Brown

Dept. of Computer Science, Yale University

Dynamic Programming

Dynamic programming records saves computation for reuse later.
. : in the optimization sense (“Linear Programming”)
. . "...it's impossible to use [it] in a pejorative way.” (Richard Bellman)
e Name designed to sound cool to RAND management and US Department of Defense

e A more descriptive term is

Richard Bellman

http://www.paperblog.fr/558947/richard-bellman-et-la-programmation-dynamique/

Rod Cutting

Start with a rod of integer length n ...

... and cut it into several smaller pieces (of integer length).

Rod Cutting
Start with a rod of integer length n ...
OB

... and cut it into several smaller pieces (of integer length).

Now suppose each length has a different value:

G- G- GED-: GEED -
ADADCEDGED N - +1+5=5+9=
DD DD G -5+55=5+5=

Rod Cutting
Start with a rod of integer length n ...
OB

... and cut it into several smaller pieces (of integer length).

Now suppose each length has a different value:

G- G- GED-: GEED -
ADADCEDGED N - +1+5=5+9=
DD DD G -5+55=5+5=

e 271 possibilities for a rod of length n

Rod Cutting

First rod-cutting strategy (brute-force):
e For every possible cut, compute the value of the left part plus the value of optimally
cutting the right part. Take the best cut.

Rod Cutting

First rod-cutting strategy (brute-force):
e For every possible cut, compute the value of the left part plus the value of optimally
cutting the right part. Take the best cut.

Cut recursively

Cut recursively

Cut recursively

N~

Cut recursively

Cut recursively

Rod Cutting

First rod-cutting strategy (brute-force):
e For every possible cut, compute the value of the left part plus the value of optimally
cutting the right part. Take the best cut.

Cut recursively

Cut recursively

Cut recursively

N~

Cut recursively

Cut recursively

Rod Cutting

Second rod-cutting strategy (top-down):
e For every cut, compute value of left part and store it in a table

e Find value of optimal cut for right part in table
» Compute it recursively if it doesn't exist yet

Rod Cutting

Second rod-cutting strategy (top-down):
e For every cut, compute value of left part and store it in a table

e Find value of optimal cut for right part in table
» Compute it recursively if it doesn't exist yet

Cut recursively

Look up cost in table

Rod Cutting

Second rod-cutting strategy (top-down):
e For every cut, compute value of left part and store it in a table

e Find value of optimal cut for right part in table
» Compute it recursively if it doesn't exist yet

Cut recursively

Look up cost in table

e Reduces computation from O(2") to ()

e Requires an array of length n to store intermediate computations

Rod Cutting

Thrid rod-cutting strategy (bottom-up):
e Compute the value of a rod of length 1. Store it.

e Compute the value of a rod of length 2. You can only cut it into rods of length 1. The
value of a rod of length 1 is already computed, so there is no recursion.

e Compute the value of successively longer rods up to length n. The optimal values of
shorter rods are always computed first so there is no recursion.

Network Routing
e Broadcast your existence to all neighors; update your list
e Broadcast your list of reachable servers to all neighbors

e Update your list of reachable servers; repeat

Network Routing

Qwest: 1

Benedict: 1
Natalie: 1
Qwest: 1

David: 1
Harvard: 1

Natalie: 1 Benedict: 1 Yale: 1 Doug: 1
Yale: 1 Yale: 1 Harvard: 1 David: 1
Google: 1 Qwest: 1

Doug: 1
Harvard: 1

Network Routing

Qwest: 1
Harvard: 2 (via Qwest)
Yale: 2 (via Qwest)

Benedict: 1
Natalie: 1
Qwest: 1
Harvard: 2 (via Qwest)
Google: 2 (via Qwest)

David: 1
Harvard: 1
Qwest: 2 (via Harvard)

Natalie: 1 Benedict: 1 Yale: 1 Doug: 1

Yale: 1 Yale: 1 Harvard: 1 David: 1

Quwest: 2 (via Yale) Quwest: 2 (via Yale) Google: 1 Qwest: 1
Benedict: 2 (via Yale) Yale: 2 (via Qwest)
Natalie: 2 (via Yale) Google: 2 (iva Qwest)

Doug: 2 (via Harvard)
David: 2 (via Harvard)

Doug: 1
Harvard: 1
Quwest: 2 (via Harvard)

Network Routing

Natalie: 1

Yale: 1

Quwest: 2 (via Yale)

Harvard: 3 (via Yale)
Google: 3 (via Yale)

Benedict: 1
Natalie: 1
Qwest: 1

Google: 2 (via Qwest)
Doug: 3 (via Qwest)
David: 3 (via Qwest)

Benedict: 1

Yale: 1

Quwest: 2 (via Yale)

Harvard: 3 (via Yale)
Google: 3 (via Yale)

Harvard: 2 (via Qwest)

Yale: 1

Harvard: 1

Google: 1

Benedict: 2 (via Yale)
Natalie: 2 (via Yale)
Doug: 2 (via Harvard)
David: 2 (via Harvard)

Qwest: 1

Harvard: 2 (via Qwest)
Yale: 2 (via Qwest)
Benedict: 3 (via Qwest)
Natalie: 3 (via Qwest)
Doug: 3 (via Qwest)
David: 3 (via Qwest)

David: 1

Harvard: 1

Qwest: 2 (via Harvard)
Yale: 3 (via Harvard)
Google: 3 (via Harvard)

Doug: 1
David: 1
Qwest: 1
Yale: 2 (via Qwest)
Google: 2 (iva Quest)
Benedict: 3 (via Qwest)
Natalie: 3 (via Qwest)

Doug: 1

Harvard: 1

Qwest: 2 (via Harvard)
Yale: 3 (via Harvard)
Google: 3 (via Harvard)

Network Routing

Natalie: 1

Yale: 1

Quwest: 2 (via Yale)
Harvard: 3 (via Yale)
Google: 3 (via Yale)
Doug: 4 (via Yale)
David: 4 (via Yale)

Benedict: 1
Natalie: 1

Qwest: 1

Harvard: 2 (via Qwest)
Google: 2 (via Qwest)
Doug: 3 (via Qwest)
David: 3 (via Qwest)

Benedict: 1

ale: 1
Quwest: 2 (via Yale)
Harvard: 3 (via Yale)
Google: 3 (via Yale)
Doug: 4 (via Yale)
David: 4 (via Yale)

Yale: 1

Harvard: 1

Google: 1

Benedict: 2 (via Yale)
Natalie: 2 (via Yale)
Doug: 2 (via Harvard)
David: 2 (via Harvard)

Qwest: 1

Harvard: 2 (via Qwest)
Yale: 2 (via Qwest)
Benedict: 3 (via Qwest)
Natalie: 3 (via Qwest)
Doug: 3 (via Qwest)
David: 3 (via Qwest)

David: 1

Harvard: 1

Qwest: 2 (via Harvard)
Yale: 3 (via Harvard)
Google: 3 (via Harvard)
Benedict: 4 (via Harvard)
Natalie: 4 (via Harvard)

Doug: 1
David: 1
Qwest: 1
Yale: 2 (via Qwest)
Google: 2 (iva Quest)
Benedict: 3 (via Qwest)
Natalie: 3 (via Qwest)

Doug: 1

Harvard: 1

Qwest: 2 (via Harvard)
Yale: 3 (via Harvard)
Google: 3 (via Harvard)
Benedict: 4 (via Harvard)
Natalie: 4 (via Harvard)

Sequence Matching

e Human genes are coded by four bases: Adenine (A), Thymine (T), Guanine (G),
Cytosine (C)

e DNA undergoes mutations with each copy:

» Substitutions: replace one base with another
» Deletions: some bases are dropped

e Suppose we isolate a gene in a new organism:
AACAGTTACC

Predict function by comparing to genes in know, organism:
eg TAAGGTCA

Sequence Matching

e How many mutations to change first sequence into second?

How (un)likely is each mutation

: minimum cost to convert one string into another.

Each change (mutation) has an associated cost:

Gap
Mismatch

Match

Example matchings:

AACAGTTACC AACAGTTACC
TAAGGTCA- - TA-AGGT-CA

1011001022 1020010201

Edit Distance

Brute-force recursive solution:

e Start at end of sequence and work backwards

AACAGTTAC NG
TAAGGTC [

oSO Q Q
== Q
NI Q
== Q
N Q|
== Q

AACAGTTAC

TAAGGTCA

Iiilil

Iiil

AACAGTTACC I
TAAGGTC N

CA

2222

e Recurse until we have all possible matches, then find minimum

e Three children per node =

matching cost

Edit Distance

recursive solution
e Consider a pair of characters in the middle:
AACA TTACC
TAAG TCA

e What is the cost of matching from this pair of Gs to the end?

» Cost of matching Gs (0) + lowest cost of matching
TTACCtoT C A.
» Brute force solution computes all possible costs

e ldea: For each pair of characters, keep track of best match up to end

Dynamic Programming

= la|g9|a|a|=|=|1

Initialization:
e Cost of zero-length match (lower right) is zero

e Inserting a gap (move right or down in table) costs two

Dynamic Programming

16]
14
12
104
8]
6.
4l
2

20— 18— 16— 14— 12— 10— 8— 6— 4— 2— 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i][j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
1N\ 2]

20— 18— 16— 14— 12— 10— 8— 6— 4— 2— 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i][j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
3N, 1N\ 2]

20— 18— 16— 14— 12— 10— 8— 6— 4— 2— 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i][j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
4N, 3N, 1N\ 2]

20— 18— 16— 14— 12— 10— 8— 6— 4— 2—

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i]1[j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
6— aN, 3N, 1N\ 2]

20— 18— 16— 14— 12— 10— 8— 6— 4— 2— 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
8— 6— aN, 3N, 1N\ 2]

20— 18— 16— 14— 12— 10— 8— 6— 4— 2— 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
10— 8— 6— aN, 3N, 1N\ 2]
20— | 18— | 16— | 14— | 12— | 10— 8— 6— 4 2 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
12N, | 10— 8— 6— aN, 3N, 1N\ 2]
20— | 18— | 16— | 14— | 12— | 10— 8— 6— 4 2 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
14— | 12\, | 10— 8— 6— aN, 3N, 1N\ 2]
20— | 18— | 16— | 14— | 12— | 10— 8— 6— 4 2 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
104
8]
6.
4l
16N, | 14— | 128, | 10— 8— 6— aN, 3N, 1N\ 2]
20— | 18— | 16— | 14— | 12— | 10— 8— 6— 4 2 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i] [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

16]
14
12
10]
8]
6.
4l
18N, | 16N\, | 14— | 128, | 10— 8— 6— aN, 3N, 1N\ 2]
20— | 18— | 16— | 14— | 12— | 10— 8— 6— 4 2 0

= la|g9|a|a|=|=|1

Iteration:
e Work back from lower right
e Cost of cell cost[i][j] is
cost[i]l [j] = min(cost[i + 1][j] + 2,
cost[il[j + 1] + 2,
cost[i + 11[j + 1] + x)

where x = 1 if the i'th and j'th characters of the two strings differ

Dynamic Programming

A A c A G T T A c c -
T 6\, 6\, 70 9N, 8\, oN, | 11] 13\, | 14) 16]
A 8\, BN 5\ N 8\, 8\, o\, | 11N, | 120 14
A | 10N 8\, 5\, 6\, oY oY o\, | 10) 12
G | 12N | 10N 8\, 6\ N, 5\, 6\, ™ 8l 10]
G | 13— | 11— [= 5\, 3N, 4N, 5\ 6] 8]
T | 15N | 13\, | 11— 9 = 5\, 2\, 3N, 4] 6]
c | 16— | 14— | 120 | 11N 9\, [N 5\, 2\, 4]
A o1eN | 1N | 14— | 12 | 10— 8— 6— aN, 3N, 2]
- | 200 | 180 [16— | 14> | 12 | 10— 8— 6— 4 2 0

Recovering the best alignment:
e Final cost is in cell cost [0] [0]
Follow arrows to reconstruct string
— aligns letter in the current column with a gap
J aligns letter in the current row with a gap
\(matches letters in current row and column with each other
Total running time: !

Some More Examples

e Image Compositing
» Given a set of overlapping images, what is the best way to stitch them?
» Cut the images along an “invisible” seam, and splice them together.
» The optimal seam can be found through dynamic programming.
* Even better: shortest path

Davis98

Some More Examples

e Seam carving (see demo)
» Shrink an image by finding one row or column of pixels to remove
» The seam doesn't have to be straight—it can wiggle
» Use dynamic programming to find the best set of pixels to remove

