
Doubly-Linked Lists



Doubly-Linked Lists

• Singly-linked lists really extend our ability to collect and 
organize data, but they suffer from a crucial limitation.
• We can only ever move in one direction through the list.

• Consider the implication that would have for trying to delete a 
node.

• A doubly-linked list, by contrast, allows us to move forward and 
backward through the list, all by simply adding one extra 
pointer to our struct definition.



Doubly-Linked Lists

typedef struct dllist

{

VALUE val;

struct dllist* prev;

struct dllist* next;

}

dllnode;



Doubly-Linked Lists

• In order to work with linked lists effectively, there are a 
number of operations that we need to understand:

1. Create a linked list when it doesn’t already exist.

2. Search through a linked list to find an element.

3. Insert a new node into the linked list.

4. Delete a single element from a linked list.

5. Delete an entire linked list.



Doubly-Linked Lists

• In order to work with linked lists effectively, there are a 
number of operations that we need to understand:

1. Create a linked list when it doesn’t already exist.

2. Search through a linked list to find an element.

3. Insert a new node into the linked list.

4. Delete a single element from a linked list.

5. Delete an entire linked list.



Doubly-Linked Lists

• Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);



Doubly-Linked Lists

• Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);

• Steps involved:
a. Dynamically allocate space for a new dllnode.

b. Check to make sure we didn’t run out of memory.

c. Populate and insert the node at the beginning of the linked list.

d. Fix the prev pointer of the old head of the linked list.

e. Return a pointer to the new head of the linked list.



Doubly-Linked Lists

• Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);

• Steps involved:
a. Dynamically allocate space for a new dllnode.

b. Check to make sure we didn’t run out of memory.

c. Populate and insert the node at the beginning of the linked list.

d. Fix the prev pointer of the old head of the linked list.

e. Return a pointer to the new head of the linked list.



Doubly-Linked Lists

list = insert(list, 12);

15 9 13 10

list



Doubly-Linked Lists

list = insert(list, 12);

15 9 13 10

list



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

listnew



Doubly-Linked Lists

• Remember, we can never break the chain when rearranging 
the pointers.

• Even if we need to have redundant pointers temporarily, that’s 
okay.



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

listnew



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

listnew



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

listnew



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

listnew



Doubly-Linked Lists

list = insert(list, 12);

12 15 9 13 10

list new



Doubly-Linked Lists

• Delete a node from a linked list.

void delete(dllnode* target);



Doubly-Linked Lists

• Delete a node from a linked list.

void delete(dllnode* target);

• Steps involved:
a. Fix the pointers of the surrounding nodes to “skip over” target.

b. Free target.



Doubly-Linked Lists

delete(x);

12 15 9 13 10

list x



Doubly-Linked Lists

delete(x);

12 15 9 13 10

list x



Doubly-Linked Lists

delete(x);

12 15 9 13 10

list x



Doubly-Linked Lists

delete(x);

12 15 9 10

list



Doubly-Linked Lists

delete(x);

12 15 9 10

list



Doubly-Linked Lists

• Linked lists, of both the singly- and doubly-linked varieties, 
support extremely efficient insertion and deletion of elements.
• In fact, these operations can be done in constant time.

• What’s the downside? Remember how we had to find an 
element? We’ve lost the ability to randomly-access list 
elements.
• Accessing a desired element may now take linear time.


