Doubly-Linked Lists



Doubly-Linked Lists

* Singly-linked lists really extend our ability to collect and
organize data, but they suffer from a crucial limitation.
* We can only ever move in one direction through the list.

* Consider the implication that would have for trying to delete a
node.

* A doubly-linked list, by contrast, allows us to move forward and
backward through the list, all by simply adding one extra
pointer to our struct definition.



Doubly-Linked Lists

typedef struct dllist

!
VALUE val;
struct dllist* prev;
struct dllist* next;
}

dllnode;



Doubly-Linked Lists

* In order to work with linked lists effectively, there are a
number of operations that we need to understand:

Create a linked list when it doesn’t already exist.
Search through a linked list to find an element.
nsert a new node into the linked list.

Delete a single element from a linked list.

A S

Delete an entire linked list.



Doubly-Linked Lists

* In order to work with linked lists effectively, there are a
number of operations that we need to understand:

3. Insert a new node into the linked list.
4. Delete a single element from a linked list.



Doubly-Linked Lists

* Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);



Doubly-Linked Lists

* Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);

* Steps involved:

a. Dynamically allocate space for a new dl1lnode.

b. Check to make sure we didn’t run out of memory.

Populate and insert the node at the beginning of the linked list.
. Fix the prev pointer of the old head of the linked list.

Return a pointer to the new head of the linked list.

o o



Doubly-Linked Lists

* Insert a new node into the linked list.

dllnode* insert(dllnode* head, VALUE val);

* Steps involved:
a. Dynamically allocate space for a new dl1lnode.
b. Check to make sure we didn’t run out of memory.
Populate and insert the node at the beginning of the linked list.
. Fix the prev pointer of the old head of the linked list.
Return a pointer to the new head of the linked list.

o O



Doubly-Linked Lists

list = insert(list, 12);
list

_ieiepy
Ed=




Doubly-Linked Lists

list = insert(list, 12);
list

papap

==




Doubly-Linked Lists

list = insert(list, 12);

new list

P

==




Doubly-Linked Lists

* Remember, we can never break the chain when rearranging
the pointers.

* Even if we need to have redundant pointers temporarily, that’s
okay.



Doubly-Linked Lists

list = insert(list, 12);

new list

P

==




Doubly-Linked Lists

list = insert(list, 12);

new list

g Papape

el




Doubly-Linked Lists

list = insert(list, 12);
new list

mom
12 15/‘/9/(13/(




Doubly-Linked Lists

list = insert(list, 12);

new list

_ ===l
ErE




Doubly-Linked Lists

list = insert(list, 12);
list new

_ P
ErE




Doubly-Linked Lists

* Delete a node from a linked list.

void delete(dllnode* target);



Doubly-Linked Lists

* Delete a node from a linked list.
void delete(dllnode* target);

* Steps involved:
a. Fix the pointers of the surrounding nodes to “skip over” target.
b. Free target.



Doubly-Linked Lists

11

1

-

st

=1l

e

1

delete(x);




Doubly-Linked Lists

11

1

-

st

=1l

/15)/9

1

delete(x);




Doubly-Linked Lists

11

1

-

st

=1l

delete(x);

/15)/9

1




Doubly-Linked Lists

11

1

-

st

=1l

delete(x);

/15)/9

1




Doubly-Linked Lists

11

1

-

st

=1l

e

1

delete(x);



Doubly-Linked Lists

* Linked lists, of both the singly- and doubly-linked varieties,
support extremely efficient insertion and deletion of elements.
* In fact, these operations can be done in constant time.

* What’s the downside? Remember how we had to find an
element? We've lost the ability to randomly-access list
elements.

e Accessing a desired element may now take linear time.



