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Dynamic Memory Allocation

• We’ve seen one way to work with pointers, namely pointing a 
pointer variable at another variable that already exists in our 
system.
• This requires us to know exactly how much memory our system will 

need at the moment our program is compiled.

• What if we don’t know how much memory we’ll need at 
compile-time? How do we get access to new memory while 
our program is running?
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• We can use pointers to get access to a block of dynamically-
allocated memory at runtime.

• Dynamically allocated memory comes from a pool of memory 
known as the heap.

• Prior to this point, all memory we’ve been working with has 
been coming from a pool of memory known as the stack.
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• We get this dynamically-allocated memory by making a call to 
the C standard library function malloc(), passing as its 
parameter the number of bytes requested.

• After obtaining memory for you (if it can), malloc() will 
return a pointer to that memory.

• What if malloc() can’t give you memory? It’ll hand you back 
NULL.
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// statically obtain an integer

int x;
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// get an integer from the user

int x = GetInt();

// array of floats on the stack

float stack_array[x];

// array of floats on the heap

float* heap_array = malloc(x * sizeof(float));
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• Here’s the trouble: Dynamically-allocated memory is not 
automatically returned to the system for later use when the 
function in which it’s created finishes execution.

• Failing to return memory back to the system when you’re 
finished with it results in a memory leak which can 
compromise your system’s performance.

• When you finish working with dynamically-allocated memory, 
you must free() it.
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char* word = malloc(50 * sizeof(char));
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char* word = malloc(50 * sizeof(char));

// do stuff with word
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char* word = malloc(50 * sizeof(char));

// do stuff with word

// now we’re done working with that block

free(word);
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• Three golden rules:

1. Every block of memory that you malloc() must 
subsequently be free()d.

2. Only memory that you malloc() should be free()d.

3. Do not free() a block of memory more than once.
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