
Dynamic Memory Allocation

Dynamic Memory Allocation

• We’ve seen one way to work with pointers, namely pointing a
pointer variable at another variable that already exists in our
system.
• This requires us to know exactly how much memory our system will

need at the moment our program is compiled.

• What if we don’t know how much memory we’ll need at
compile-time? How do we get access to new memory while
our program is running?

Dynamic Memory Allocation

• We can use pointers to get access to a block of dynamically-
allocated memory at runtime.

• Dynamically allocated memory comes from a pool of memory
known as the heap.

• Prior to this point, all memory we’ve been working with has
been coming from a pool of memory known as the stack.

Dynamic Memory Allocation

text

initialized data

uninitialized data

heap

stack

environment variables

Dynamic Memory Allocation

text

initialized data

uninitialized data

heap

stack

environment variables

Dynamic Memory Allocation

• We get this dynamically-allocated memory by making a call to
the C standard library function malloc(), passing as its
parameter the number of bytes requested.

• After obtaining memory for you (if it can), malloc() will
return a pointer to that memory.

• What if malloc() can’t give you memory? It’ll hand you back
NULL.

Dynamic Memory Allocation

// statically obtain an integer

int x;

Dynamic Memory Allocation

// statically obtain an integer

int x;

// dynamically obtain an integer

int *px = malloc(4);

Dynamic Memory Allocation

// statically obtain an integer

int x;

// dynamically obtain an integer

int *px = malloc(sizeof(int));

Dynamic Memory Allocation

// get an integer from the user

int x = GetInt();

// array of floats on the stack

float stack_array[x];

// array of floats on the heap

float* heap_array = malloc(x * sizeof(float));

Dynamic Memory Allocation

// get an integer from the user

int x = GetInt();

// array of floats on the stack

float stack_array[x];

// array of floats on the heap

float* heap_array = malloc(x * sizeof(float));

Dynamic Memory Allocation

// get an integer from the user

int x = GetInt();

// array of floats on the stack

float stack_array[x];

// array of floats on the heap

float* heap_array = malloc(x * sizeof(float));

Dynamic Memory Allocation

• Here’s the trouble: Dynamically-allocated memory is not
automatically returned to the system for later use when the
function in which it’s created finishes execution.

• Failing to return memory back to the system when you’re
finished with it results in a memory leak which can
compromise your system’s performance.

• When you finish working with dynamically-allocated memory,
you must free() it.

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));

// do stuff with word

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));

// do stuff with word

// now we’re done working with that block

free(word);

Dynamic Memory Allocation

• Three golden rules:

1. Every block of memory that you malloc() must
subsequently be free()d.

2. Only memory that you malloc() should be free()d.

3. Do not free() a block of memory more than once.

Dynamic Memory Allocation

int m;

Dynamic Memory Allocation

int m;

m

Dynamic Memory Allocation

int m;

int* a;

m

Dynamic Memory Allocation

int m;

int* a;

m

a

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));
m

a

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));
m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;
m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;
m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

10

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

10

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

10 12

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

free(b);

10 12

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

free(b);

10

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

free(b);

*a = 11;

10

m

ba

Dynamic Memory Allocation

int m;

int* a;

int* b = malloc(sizeof(int));

a = &m;

a = b;

m = 10;

*b = m + 2;

free(b);

*a = 11;

10

m

ba

