
Pointers

Pointers

• Pointers provide an alternative way to pass data between
functions.
• Recall that up to this point, we have passed all data by value, with

one exception.
• When we pass data by value, we only pass a copy of that data.

• If we use pointers instead, we have the power to pass the
actual variable itself.
• That means that a change that is made in one function can impact

what happens in a different function.
• Previously, this wasn’t possible!

Pointers

• Before we dive into what pointers are and how to work with
them, it’s worth going back to basics and have a look at our
computer’s memory.

Pointers

• Every file on your computer lives on your disk drive, be it a
hard disk drive (HDD) or a solid-state drive (SSD).

• Disk drives are just storage space; we can’t directly work there.
Manipulation and use of data can only take place in RAM, so
we have to move data there.

• Memory is basically a huge array of 8-bit wide bytes.
• 512 MB, 1GB, 2GB, 4GB…

Pointers

Data Type Size (in bytes)

int 4

Pointers

Data Type Size (in bytes)

int 4

char 1

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

string ???

Pointers

• Back to this idea of memory as a big array of byte-sized cells.

• Recall from our discussion of arrays that they not only are
useful for storage of information but also for so-called random
access.
• We can access individual elements of the array by indicating which

index location we want.

• Similarly, each location in memory has an address.

Pointers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Pointers

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;

Pointers

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

H 65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

0100
1000

0000000000000000
0000000001000001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

0100
1000

0000
0000

0000
0000

0000
0000

0100
0001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

H 65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;

Pointers

H 65

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;
string surname = “Lloyd”;

Pointers

H 65 L l o y d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;
string surname = “Lloyd”;

Pointers

H 65 L l o y d \0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

char c = ‘H’;
int speedlimit = 65;
string surname = “Lloyd”;

Pointers

H 65 L l o y d \0

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x10 0x11 0x12 0x13

char c = ‘H’;
int speedlimit = 65;
string surname = “Lloyd”;

Pointers

• There’s only one critical thing to remember as we start working
with pointers:

POINTERS ARE JUST ADDRESSES

Pointers

• As we start to work with pointers, just keep this image in mind:

Pointers

• As we start to work with pointers, just keep this image in mind:

k

int k;

Pointers

• As we start to work with pointers, just keep this image in mind:

5

k

int k;
k = 5;

Pointers

• As we start to work with pointers, just keep this image in mind:

5

k pk

int k;
k = 5;
int* pk;

Pointers

• As we start to work with pointers, just keep this image in mind:

5 0x80C74820

k pk

int k;
k = 5;
int* pk;
pk = &k;

Pointers

• As we start to work with pointers, just keep this image in mind:

5

k pk

int k;
k = 5;
int* pk;
pk = &k;

Pointers

• A pointer, then, is a data item whose
• value is a memory address

• type describes the data located at that memory address

• As such, pointers allow data structures and/or variables to be
shared among functions.

• Pointers make a computer environment more like the real
world.

Pointers

• The simplest pointer available to us in C is the NULL pointer.
• As you might expect, this pointer points to nothing (a fact which can

actually come in handy!)

• When you create a pointer and you don’t set its value
immediately, you should always set the value of the pointer to
NULL.

• You can check whether a pointer is NULL using the equality
operator (==).

Pointers

• Another easy way to create a pointer is to simply extract the
address of an already existing variable. We can do this with the
address extraction operator (&).

• If x is an int-type variable, then &x is a pointer-to-int whose
value is the address of x.

• If arr is an array of doubles, then &arr[i] is a pointer-to-
double who value is the address of the ith element of arr.
• An array’s name, then, is actually just a pointer to its first element –

you’ve been working with pointers all along!

Pointers

• The main purpose of a pointer is to allow us to modify or
inspect the location to which it points.
• We do this by dereferencing the pointer.

• If we have a pointer-to-char called pc, then *pc is the data
that lives at the memory address stored inside the variable pc.

Pointers

• Used in this context, * is known as the dereference operator.

• It “goes to the reference” and accesses the data at that
memory location, allowing you to manipulate it at will.

• This is just like visiting your neighbor. Having their address isn’t
enough. You need to go to the address and only then can you
interact with them.

Pointers

• Can you guess what might happen if we try to dereference a
pointer whose value is NULL?

Pointers

• Can you guess what might happen if we try to dereference a
pointer whose value is NULL?

Segmentation fault

Pointers

• Can you guess what might happen if we try to dereference a
pointer whose value is NULL?

Segmentation fault

• Surprisingly, this is actually good behavior! It defends against
accidental dangerous manipulation of unknown pointers.
• That’s why we recommend you set your pointers to NULL

immediately if you aren’t setting them to a known, desired value.

Pointers

int* p;

• The value of p is an address.

• We can dereference p with the * operator.

• If we do, what we’ll find at that location is an int.

Pointers

• One more annoying thing with those *s. They’re an important
part of both the type name and the variable name.
• Best illustrated with an example.

int* px, py, pz;

Pointers

• One more annoying thing with those *s. They’re an important
part of both the type name and the variable name.
• Best illustrated with an example.

int* px, py, pz;

int* pa, *pb, *pc;

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

string ???

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

char* ???

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

char* 4 or 8

Pointers

Data Type Size (in bytes)

int 4

char 1

float 4

double 8

long long 8

char*, int*, float*,
double*, _______*

4 or 8

Pointers

• So what happens?

5

k pk

Pointers

• So what happens?

5

k pk

*pk = 35;

Pointers

• So what happens?

35

k pk

*pk = 35;

Pointers

• So what happens?

35

k pk

Pointers

• So what happens?

35

k pk

int m;

Pointers

• So what happens?

35

k pk

m

int m;

Pointers

• So what happens?

35

k pk

m

int m;
m = 4;

Pointers

• So what happens?

35

k pk

4

m

int m;
m = 4;

Pointers

• So what happens?

35

k pk

4

m

int m;
m = 4;
pk = &m;

Pointers

• So what happens?

35

k pk

4

m

int m;
m = 4;
pk = &m;

