
Python Syntax

Python Syntax

• Python is an example of a very commonly-used modern
programming language.
• C was first released in 1972, Python in 1991.

• Python is an excellent and versatile language choice for making
complex C operations much simpler.
• String manipulation
• Networking

• Fortunately, Python is heavily inspired by C (its primary
interpreter, Cpython, is actually written in C) and so the syntax
should be a shallow learning curve.

Python Syntax

• To start writing Python, open up a file with the .py file
extension.

• Unlike a C program, which typically has to be compiled
before you can run it, a Python program can be run without
explicitly compiling it first.

• Important note: In CS50, we teach Python 3. (Not Python 2,
which is also still fairly popular.)

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

int x = 54;

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

int x = 54;

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

x = 54

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

• Python statements needn't end with semicolons!

x = 54

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

string phrase = "This is CS50";

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

string phrase = "This is CS50";

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

phrase = "This is CS50"

Python Syntax

• Variables

• Python variables have two big differences from C.
• No type specifier.

• Declared by initialization only.

phrase = 'This is CS50'

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

if (y < 43 || z == 15)
{

// code goes here
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

if (y < 43 || z == 15)
{

// code goes here
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

if y < 43 or z == 15:
code goes here

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

if y < 43 or z == 15:
code goes here

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use,
but they look a little bit different now.

if y < 43 or z == 15:
code goes here

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if (y < 43 && z == 15)
{

// code block 1
}
else
{

// code block 2
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if (y < 43 && z == 15)
{

// code block 1
}
else
{

// code block 2
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if y < 43 and z == 15:
code block 1

else:
code block 2

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if y < 43 and z == 15:
code block 1

else:
code block 2

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if (coursenum == 50)
{

// code block 1
}
else if (coursenum != 51)
{

// code block 2
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if (coursenum == 50)
{

// code block 1
}
else if (coursenum != 51)
{

// code block 2
}

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if coursenum == 50:
code block 1

elif not coursenum == 51:
code block 2

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if coursenum == 50:
code block 1

elif not coursenum == 51:
code block 2

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

if coursenum == 50:
code block 1

elif not coursenum == 51:
code block 2

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

char var = get_char();
bool alphabetic = isalpha(var) ? true : false;

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

char var = get_char();
bool alphabetic = isalpha(var) ? true : false;

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

letters_only = True if input().isalpha() else False

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

letters_only = True if input().isalpha() else False

Python Syntax

• Conditionals

• All of the old favorites from C are still available for you to use.

letters_only = True if input().isalpha() else False

Python Syntax

• Loops

• Two varieties: while and for

Python Syntax

• Loops

• Two varieties: while and for

int counter = 0;
while (counter < 100)
{

printf("%i\n", counter);
counter++;

}

Python Syntax

• Loops

• Two varieties: while and for

int counter = 0;
while (counter < 100)
{

printf("%i\n", counter);
counter++;

}

Python Syntax

• Loops

• Two varieties: while and for

counter = 0
while counter < 100:

print(counter)
counter += 1

Python Syntax

• Loops

• Two varieties: while and for

for (int x = 0; x < 100; x++)
{

printf("%i\n", x);
}

Python Syntax

• Loops

• Two varieties: while and for

for (int x = 0; x < 100; x++)
{

printf("%i\n", x);
}

Python Syntax

• Loops

• Two varieties: while and for

for x in range(100):
print(x)

Python Syntax

• Loops

• Two varieties: while and for

for (int x = 0; x < 100; x += 2)
{

printf("%i\n", x);
}

Python Syntax

• Loops

• Two varieties: while and for

for (int x = 0; x < 100; x += 2)
{

printf("%i\n", x);
}

Python Syntax

• Loops

• Two varieties: while and for

for x in range(0, 100, 2):
print(x)

Python Syntax

• Arrays

• Here's where things really start to get a lot better than C.

• Python arrays (more appropriately known as lists) are not fixed
in size; they can grow or shrink as needed, and you can always
tack extra elements onto your array and splice things in and
out easily.

Python Syntax

• Arrays Lists

• Here's where things really start to get a lot better than C.

• Python arrays (more appropriately known as lists) are not fixed
in size; they can grow or shrink as needed, and you can always
tack extra elements onto your array and splice things in and
out easily.

Python Syntax

• Lists

• Declaring a list is pretty straightforward.

nums = []

Python Syntax

• Lists

• Declaring a list is pretty straightforward.

nums = [1, 2, 3, 4]

Python Syntax

• Lists

• Declaring a list is pretty straightforward.

nums = [x for x in range(500)]

Python Syntax

• Lists

• Declaring a list is pretty straightforward.

nums = list()

Python Syntax

• Lists

• Tacking on to an existing list can be done a few ways:

nums = [1, 2, 3, 4]
nums.append(5)

Python Syntax

• Lists

• Tacking on to an existing list can be done a few ways:

nums = [1, 2, 3, 4]
nums.insert(4, 5)

Python Syntax

• Lists

• Tacking on to an existing list can be done a few ways:

nums = [1, 2, 3, 4]
nums[len(nums):] = [5]

Python Syntax

• Lists

• Tacking on to an existing list can be done a few ways:

nums = [1, 2, 3, 4]
nums[len(nums):] = [5]

Python Syntax

• Tuples

• Python also has a data type that is not quite like anything
comparable to C, a tuple.

• Tuples are ordered, immutable sets of data; they are great for
associating collections of data, sort of like a struct in C, but
where those values are unlikely to change.

Python Syntax

• Tuples

• Here is a list of tuples:

Python Syntax

• Tuples

• Here is a list of tuples:

presidents = [
("George Washington", 1789),
("John Adams", 1797),
("Thomas Jefferson", 1801),
("James Madison", 1809)

]

Python Syntax

• Tuples

• This list is iterable as well:

presidents = [
("George Washington", 1789),
("John Adams", 1797),
("Thomas Jefferson", 1801),
("James Madison", 1809)

]

Python Syntax

• Tuples

• This list is iterable as well:

presidents = [
("George Washington", 1789),
("John Adams", 1797),
("Thomas Jefferson", 1801),
("James Madison", 1809)

]

for prez, year in presidents:
print("In {1}, {0} took office".format(prez, year))

Python Syntax

• Tuples

• This list is iterable as well:

presidents = [
("George Washington", 1789),
("John Adams", 1797),
("Thomas Jefferson", 1801),
("James Madison", 1809)

]

for prez, year in presidents:
print("In {1}, {0} took office".format(prez, year))

Python Syntax

• Tuples

• This list is iterable as well:

presidents = [
("George Washington", 1789),
("John Adams", 1797),
("Thomas Jefferson", 1801),
("James Madison", 1809)

]

In 1789, George Washington took office
In 1797, John Adams took office
In 1801, Thomas Jefferson took office
In 1809, James Madison took office

for prez, year in presidents:
print("In {1}, {0} took office".format(prez, year))

Python Syntax

• Dictionaries

• Python also has built in support for dictionaries, allowing you
to specify list indices with words or phrases (keys), instead of
integers, which you were restricted to in C.

Python Syntax

• Dictionaries

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

Python Syntax

• Dictionaries

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

Python Syntax

• Dictionaries

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

Python Syntax

• Dictionaries

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

Python Syntax

• Dictionaries

pizzas["cheese"] = 8

Python Syntax

• Dictionaries

pizzas["cheese"] = 8

if pizza["vegetables"] < 12:
do something

Python Syntax

• Dictionaries

pizzas["cheese"] = 8

if pizza["vegetables"] < 12:
do something

pizzas["bacon"] = 14

Python Syntax

• Python also has built in support for dictionaries, allowing you
to specify list indices with words or phrases (keys), instead of
integers, which you were restricted to in C.

• But this creates a somewhat new problem… how do we iterate
through a dictionary? We don't have indexes ranging from [0,
n-1] anymore.

Python Syntax

• Loops (redux)

• The for loop in Python is extremely flexible!

for pie in pizzas:
use pie in here as a stand-in for "i"

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie in pizzas:
print(pie)

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie in pizzas:
print(pie)

cheese
vegetable
buffalo chicken
pepperoni

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie, price in pizzas.items():
print(price)

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie, price in pizzas.items():
print(price)

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie, price in pizzas.items():
print(price)

12
10
9
11

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie, price in pizzas.items():
print("A whole {} pizza costs ${}".format(pie, price))

Python Syntax

• Loops (redux)

pizzas = {
"cheese": 9,
"pepperoni": 10,
"vegetable": 11,
"buffalo chicken": 12

}

for pie, price in pizzas.items():
print("A whole {} pizza costs ${}".format(pie, price))

A whole buffalo chicken pizza costs $12
A whole cheese pizza costs $9
A whole vegetable pizza costs $11
A whole pepperoni pizza costs $10

• Printing and variable interpolation

• format gives one way to interpolate variables into our printed
statements in a very printf-like way, but there are others.

print("A whole {} pizza costs ${}".format(pie, price))

Python Syntax

• Printing and variable interpolation

• format gives one way to interpolate variables into our printed
statements in a very printf-like way, but there are others.

print("A whole {} pizza costs ${}".format(pie, price))

print("A whole " + pie + " pizza costs $" + str(price))

Python Syntax

• Printing and variable interpolation

• format gives one way to interpolate variables into our printed
statements in a very printf-like way, but there are others.

print("A whole {} pizza costs ${}".format(pie, price))

print("A whole " + pie + " pizza costs $" + str(price))

Python Syntax

Python Syntax

• Printing and variable interpolation

• format gives one way to interpolate variables into our printed
statements in a very printf-like way, but there are other/s.

print("A whole {} pizza costs ${}".format(pie, price))

print("A whole " + pie + " pizza costs $" + str(price))

you may see this, but avoid; deprecated
print("A whole %s pizza costs $%2d" % (pie, price))

Python Syntax

• Functions

• Python has support for functions as well. Like variables, we
don't need to specify the return type of the function (because
it doesn't matter), nor the data types of any parameters (ditto).

• All functions are introduced with the def keyword.
• Also, no need for main; the interpreter reads from top to bottom!
• If you wish to define main nonetheless (and you might want to!), you

must at the very end of your code have:
•

if __name__ == "__main__":
main()

• Functions

def square(x):
return x * x

Python Syntax

Python Syntax

• Functions

def square(x):
return x ** 2

Python Syntax

• Functions

def square(x):
return x ** 2

Python Syntax

• Functions

def square(x):
result = 0
for i in range(0, x):

result += x
return result

Python Syntax

• Functions

def square(x):
result = 0
for i in range(0, x):

result += x
return result

print(square(5))

Python Syntax

• Objects

• Python is an object-oriented programming language.

• An object is sort of analogous to a C structure.

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char *model;

}

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char *model;

}

struct car herbie;

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char *model;

}

struct car herbie;
herbie.year = 1963;
herbie.model = "Beetle";

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char *model;

}

struct car herbie;
year = 1963;
model = "Beetle";

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char *model;

}

struct car herbie;
year = 1963;
model = "Beetle";

Python Syntax

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

• Objects, meanwhile, have properties but also methods, or
functions that are inherent to the object, and mean nothing
outside of it. You define the methods inside the object also.
• Thus, properties and methods don’t ever stand on their own.

Python Syntax

• Objects

function(object);

Python Syntax

• Objects

function(object);

Python Syntax

• Objects

object.method()

Python Syntax

• Objects

• You define a type of object using the class keyword in
Python.

• Classes require an initialization function, also more-generally
known as a constructor, which sets the starting values of the
properties of the object.

• In defining each method of an object, self should be its first
parameter, which stipulates on what object the method is
called.

Python Syntax

• Objects

class Student():

def __init__(self, name, id):
self.name = name
self.id = id

def changeID(self, id):
self.id = id

def print(self):
print("{} – {}".format(self.name, self.id))

Python Syntax

• Objects

class Student():

def __init__(self, name, id):
self.name = name
self.id = id

def changeID(self, id):
self.id = id

def print(self):
print("{} – {}".format(self.name, self.id))

jane = Student("Jane", 10)
jane.print()
jane.changeID(11)
jane.print()

Python Syntax

• Style

• If you haven't noticed, good style is crucial in Python.

• Tabs and indentation actually matter in this language, and
things will not work the way you intend for them to if you
disregard styling!

• Good news? No more curly braces to delineate blocks!

• Now they just are used to declare dictionaries.

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can Python programs tie files together.

#include <cs50.h>

Python Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can Python programs tie files together.

#include <cs50.h>

Python Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can Python programs tie files together.

import cs50

Python Syntax

• Including files

• Just like C programs can consist of multiple files to form a
single program, so can Python programs tie files together.

cs50.get_int()

cs50.get_float()

cs50.get_string()

Python Syntax

Python Syntax

• Python programs can be prewritten in .py files, but you can
also write and test short Python snippets using the Python
interpreter from the command line.

• All that is required is that the Python interpreter is installed on
the system you wish to run your Python programs on.

Python Syntax

• To run your Python program through the Python interpreter at
the command-line, simply type

python <file>

• and your program will run through the interpreter, which will
execute everything inside of the file, top to bottom.

Python Syntax

• You can also make your programs look a lot more like C
programs when they execute by adding a shebang to the top of
your Python files, which automatically finds and executes the
interpreter for you.

#!/usr/bin/env python3

• If you do this, you need to change the permissions on your file
as well using the Linux command chmod as follows:

chmod a+x <file>

