Review for Test

October 11, 2017/

(beginning at 6:10pm)



Info
http://docs.cs50.net/2017/fall/test/about.html

« /2 hour window in which to take the test.
* You should require much less than that. Expect to spend an
average of 30 minutes per question.

e Released Fri 10/13 at noon, due via submit50 Mon 10/16

at noon.
* Be sure to run update50 in your IDE before submitting!

e« SubmMitting seven minutes late is equivalent to not submitting at
all: don’t wait until the last possible second.




Resources

« Consult the syllabus for a guide of topics.
« We'll run through everything at a very high level today.

 Review |lecture notes.

* Review lecture source code.

* Review lecture slides.

 (Re)watch lecture videos and shorts.

* Review last year’s test and answer key.

 Review problem set specifications, distribution code, and
sample solutions.




Resources

« Office hours
 Tonight in Widener from 8-10pm.
« Tomorrow at HSA from 10am-5pm.
« Tomorrow night in Widener from 8-10pm.
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« Office hours
 Tonight in Widener from 8-10pm.
« Tomorrow at HSA from 10am-5pm.
« Tomorrow night in Widener from 8-10pm.

« No office hours during the Test (10/13 through 10/16) up
through shortly after pset6 is released.

« Office hours resume on Sun 10/22.
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e CS50 Discourse

« You may post guestions through noon on 10/13, and staff will try
fo answer.

« You may not post guestions on Discourse from Fri 10/13 noon
through Mon 10/16.

* Discourse will become read-only during the Test.
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Resources

 The only humans to which you may turn for help during
the Test are the course’s heads.

* YOou may not email any other CS50 staff members.

* YOou may not ask roommates, friends, tutors, or
classmates for help.

* YOU may not post questions on any online forum,
whether local to the course or not (though you may
review previously-asked questions).



Topics

« Weeks 0-5 (a/k/a Lectures O-6)

« Does not cover Thu 10/12 lecture at Yale. (Dynamic
Programming)

« Does not cover Fri 10/13 lecture at Harvard. (Python)

e Problem Sets O-5.

 Does not presuppose completion of any “more comfortable”
versions of problems.



Topics

« Weeks 0-5 (a/k/a Lectures O-6)

« Does not cover Thu 10/12 lecture at Yale. (Dynamic
Programming)

« Does not cover Fri 10/13 lecture at Harvard. (Python)

e Problem Sets O-5.

 Does not presuppose completion of any “more comfortable”
versions of problems.

e Test will contain some coding exercises, but not on the
scale of any of the more recent problem sets.
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e Binary
e Digits: O, 1
 Place values: 1s, 2s, 45, 8s, 16s...
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Week O

e Binary
e Digits: O, 1
 Place values: 1s, 2s, 45, 8s, 16s...

o« ASCII
« Uniform standard for mapping of numbers to characters.
« 'AIs5, ‘a’ 1s97/...
e Bytes
 The value of a byte is context-dependent.
« Maybe that 65 is just a 65.

* In Microsoft Word that 65 might indeed be an ‘A

* In Photoshop that 65 might represent the red value of a
oarticular pixel.



Week O

 Algorithms
« Step by step sets of instructions for completing a task.

« Peanut butter and jelly.
« Anticipating errors, and the importance of precision.

 Finding Mike Smith in a phone book.
« Correctness versus efficiency.



Week O

 Algorithms
« Step by step sets of instructions for completing a task.

« Peanut butter and jelly.
« Anticipating errors, and the importance of precision.

 Finding Mike Smith in a phone book.
« Correctness versus efficiency.

e Pseudocode

 English-like syntax that can be used as a stepping stone to
solving a problem.

 Functions, statements, Boolean expressions, l00ps...



Week O

e Scratch
« Basic blocks - control, data, sound, looks.
« Custom blocks - “functions”.
 Events - when




Week 1

| OOpPS
 for - running a specific number of times.
 while - running some number of times, possibly zero.
 do-while - running some number of times, at least once.



Week 1

| OOpPS
 for - running a specific number of times.
 while - running some number of times, possibly zero.
 do-while - running some number of times, at least once.

« Conditions
« Boolean expressions - true or false
e if else if, else
e switch
e Ternary operator - ?:



Week 1

* VVariables
 Containers that hold information.
 Before using, need to declare.

* Variables hold information of a specific type, and have a name.
« Use = to assign values to variables, right-to-left.
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* Variables
« Containers that hold information.
 Before using, need to declare.
* Variables hold information of a specific type, and have a name.
« Use = to assign values to variables, right-to-left.
« Compiling

* make is a utility we use to turn our C code into executable
orogrames.

* clang is a compiler that does the hard work of this translation.
« Computers only understand machine code, not our C source.
 Preprocessing -2 compiling =2 assembling =2 linking.



Week 1

« Data Types

* Native data types in C
* int, char, float, double, long

« Additional data types
 bool (via stdbool.h, itself included in cs50.h)
 string (via cs50.h)

e signed and unsigned
e 1 byte

* bool, char
o 4 pbytes

 float, int

« 8 bytes
* double, long, string



Week 1

e Functions

 Functions are abstractions that allow us to “outsource” aspects
of our problem.

Black box model.

Prototypes versus definitions.
Prototypes versus function calls.
Return types and parameters.



Week 1

int square(int n);

int main(void)

{

int x = get_int("Integer please: ");

int squared = square(x);

printf("%i squared is %i.\n", x, squared);
}

int square(int n)

return n * n;
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int square(int n);

int main(void)

{

int x = get_int("Integer please: ");

int squared = square(x);

printf("%i squared is %i.\n", x, squared);
}

int square(int n)

return pow(n, 2);



Week 1

int square(int n);

int main(void)

{

int x = get_int("Integer please: ");

int squared = square(x);

printf("%i squared is %i.\n", x, squared);
}

int square(int n)

int product = 0;
for (int 1 = 0; i < n; i++)
{

product += n;

}

return product;



Week 1

* Overflow
« With an integer, we only have 4 bytes (32 bits) to work with.
 We can’t store any number equal to or greater than 232



Week 1

* Overflow
« With an integer, we only have 4 bytes (32 bits) to work with.
 We can’t store any number equal to or greater than 232

* Imprecision
 With a float, we only have 4 bytes (32 bits) to work with.
« We cannot possibly represent every real number.



Week 1, continued

« Bugs and Tools

 Implicit declaration of functions.

« Use of undeclared identifier.

« Out of bounds error.
Segmentation fault.
help50, debug50, check50, style5o.
Breakpoints, step over, step into.
eprintf.
ater in the course: valgrind.



Week 1, continued

e Reference Tools

« Manual pages are part of most Linux installations.
* man

* reference.cs50.net is written by the staff.
« Many online equivalents for C and other languages.




Week 1, continued

e Reference Tools

« Manual pages are part of most Linux installations.
* man

* reference.cs50.net is written by the staff.
« Many online equivalents for C and other languages.

« Cryptography
 Art and science of obscuring information.
 Rotational cipher.



Week 1, continued

e Strings
* A sequence of characters.
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e Strings
s A cocujonco ol charactors
« An array of characters.

* Length of a string is available via the function strlen.

 Each character of the string is available with str[i]
* @ <= 1 < strlen(str)

« All strings end with the \@ character.




Week 1, continued

e Strings
s A cocujonco ol charactors
« An array of characters.

* Length of a string is available via the function strlen.

 Each character of the string is available with str[i]
* O <= i < strlen(str)

« All strings end with the \@ character.

Typecasting

 Think back to ASCII, every character is associated with a
numMber.

« \WWe can treat characters as numbers and do math with them
using their ASCI| values.

« Explicit typecasting uses a (type) specifier.




Week 1, continued

« Command-Line Arguments
« By modifying our prototype for main, the user can supply extra
information to our programs at runtime.

 int main(int argc, string argv[])
« argc refers to how many things the user typed.
e argv is an array of strings storing what they actually typed.



Week 2

« Searching

* L inear search considers a general array, and looks over each
element from beginning to end until it finds the target.

« Binary search considers a sorted array, looks at the middle, and
discards half of the remaining array until it finds the target.



Week 2

« Searching

* Linear search considers a general array, and looks over each
element from beginning to end until it finds the target.

« Binary search considers a sorted array, looks at the middle, and
discards half of the remaining array until it finds the target.

e Sorting
« Selection sort: Find the smallest remaining, swap with the first.
 Bubble sort: Adjacent pairs out of order? Swap them.
* Insertion sort: Shift previously sorted elements to make room.
« Merge sort: Sort partial arrays, then combine them together.



Week 2

 Big O
* Provides us with a shorthand way to refer to the running time of
various algorithms.
* In CS50, normally O describes the upper bound on runtime.

* In CS50, normally Q describes the lower bound on runtime.



Week 2

Algorithm

Upper bound (O)

Lower bound (Q2)

L INnear search

Binary search

Selection sort

Bubble sort

INsertion sort

Merge sort




Week 2

e Recursion

 Problem solving technigue where we use the solution to a
smaller problem to inform the solution to a larger one.

* Series summation, factorial, exponentiation, Fibonacci
seguence...

* A recursive algorithm has two parts:

 Base case - recursion stops; the simple case we have a solution for.

 Recursive case - recursion continues; make a more complex case a little
bit simpler, tending towards the base case.



Week 2

int fact(int n) int fact(int n)
{ {
if (n <= 0) int product = 1;
{ while (n > 0)
return 1; {
} product *= n--;
return n * fact(n-1); }
} return product;
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int fact(int n) int fact(int n)
{ {
if (n <= 0) int product = 1;
{ while (n > 0)
return 1; {
} product *= n--;
return n * fact(n-1); }
} return product;



Week 3

e Call Stack

« Swapping values in a separate function has no effect in the
calling function.

* Passing variables to a function gives that function its own local
copy of those variables; our original ones remain intact.

« A function call creates a stack frame.

 The most recently called function is the one with the “highest”
frame on the stack, and is the only function active.

* All other functions are “on pause” where they left off.



Week 3

* Pointers
« How can we access memory in other functions?

 Pointers are addresses, specifically the addresses of variables
we care apbout.

 Finding a variable’s address: &

« Going to an address to manipulate a variable: *
« Dereferencing



Week 3

* Pointers
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« Going to an address to manipulate a variable: *
« Dereferencing
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int main(void)

{

int x = 4;
int *px = &x;
*px = 5;
printf("%i\n"

» X))




Week 3

int main(void)

{
int x = 4;
change(x);
printf("%i\n", Xx);



Week 3

int main(void) void change(int *Xx)
{ {
int x = 4; *X = 5;
change (&x); return;
printf("%i\n", x); }



Week 3

e Strings Redux

 The variable name of a string is behind the scenes just a pointer
to (aka the address of) its first character.

e string s = "CS50";
e string t = "CS50";



Week 3

e Strings Redux
 The variable name of a string is behind the scenes just a pointer

to (aka the address of) its first character.
e string s = "CS50";
e string t = "CS50";

e Dynamic Memory
e If | need memory while my program is running that | didn’t
anticipate at compile-time, | can use malloc.

* malloc expects a number of bytes as a parameter, and gives you

back a pointer.
* sizeof is helpful here!

 Need to free all dynamically allocated memory.



Week 3

int main(void)
{
int x = 4;
int *px = &x;
int *py = malloc(sizeof(int));
*py = 5;
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int main(void) X
{

int x = 4;

int *px = &x;

int *py = malloc(sizeof(int));

*py = 5;
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int main(void)

{

int x = 4;

int *px = &x;

int *py = malloc(sizeof(int));
*py = 5;
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int x = 4;

int *px = &x; by

int *py = malloc(sizeof(int));

*py = 5;
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int main(void)
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int x = 4;
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int main(void)

pX
{ .
2%

int x = 4;

int *px = &x;

int *py = malloc(sizeof(int));
*py = 5;
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int main(void)

{
int x = 4;
int *px = &x; by
int *py = malloc(sizeof(int));
} - ===
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Week 3

« Valgring
* Tool that we can use to spot memory leaks in our program.
* Tells about any invalid thing we do with program’s memory.
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« Valgring
* Tool that we can use to spot memory leaks in our program.
* Tells about any invalid thing we do with program’s memory.

e« Buffer Overflow

* Integer overflow occurs when we try and store an integer larger
than we are capable of storing.

« Buffer overflow occurs when we try and store a string larger
than we've set aside space for.

« Can be used to malicious effect.



Week 3

e Memory
* You can think of memory as a huge array of bytes.

* Divided into two main segments, the stack and the heap.

« Variables that you give a name to normally live on the stack.
« Memory that you allocate dynamically lives on the heap.

 These two segments are actually the same.
 Possible segfault if they collide into each other.




Week 4

e File Operations

* Special kind of structure used for abstracting a file on the file
system.
* fopen to obtain a file pointer (FILE *).
« fclose when done working with it.
 Reading from a file:
 fgetc, fgets, fread, fscanf..
 Writing to a file:
 fputc, fputs, fwrite, fprintf..
 Other operations:
 fseek, ftell, feof, ferror...



Week 4

e Structures

« C permits us to encapsulate data, by wrapping it up into a
structure.

 Group together related data into a single entity.
Dot operator to access a structure’s members.

o |f we have pointers to structures, we use arrow (->) instead of
dot, to dereference the pointer, then access the member.

« typedef to give us cleaner type names.
« Structures can be used, for instance, to organize image files.



Week 4

struct student

{

char name[20];
char house[20];
int year;
float gpa;
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struct student

{

char name[20];
char house[20];
int year;
float gpa;

struct student maria;

strcpy(maria.name, "Maria");
strcpy(maria.house, "Cabot");
maria.year = 2018;

maria.gpa = 5.00;



Week 4

e | inked Lists

« Arrays suffer from a fixed-size limitation.
Lists grow and shrink with ease, but require dynamic memory.

Structure (node) with at least two members:

 Data
* A pointer to another structure in the same linked list (or to NULL).

Insertion and deletion can be constant time, O(1), operations.

L ookup/search is O(n), since we lose random access.
« Start at the beginning of the chain, and work your way to the end.
* Linear search.



Week 4

e Stacks
 LIFO (last in, first out)

* Linked list: You can only ever insert or delete from the head of
the list.

* Array: Keep track of most recently added element at all times.
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e Stacks
 LIFO (last in, first out)

* Linked list: You can only ever insert or delete from the head of
the list.

* Array: Keep track of most recently added element at all times.

 Queues
e FIFO (first in, first out)

* Linked list: You can only ever insert at the head of the list and
delete from the tail of the list.

* Array: Keep track of number of elements and “oldest” element
at all times.



Week 4

e [rees

« Node with normally at least three members:
 Data
« At least two pointers to other nodes lower in the tree (or to NULL)

 Binary trees

« Binary search trees
« Lookup/search is OClog n) in a binary search tree.



Week 4

e Hash tables

« Combination of a linked list and an array.

 Use a hash function to get a value for your data.

« Store in the linked list located at that index of the array.
* Insertion can be constant time, O(1), operations.

* Deletion and lookup are O(n).



Week 4

e Hash tables

« Combination of a linked list and an array.

 Use a hash function to get a value for your data.

« Store in the linked list located at that index of the array.
* Insertion can be constant time, O(1), operations.

* Deletion and lookup are O(n).

e Tries
 Special case of a tree.
* Insertion and deletion can be constant time, O(1), operations.
e Lookup/search is OC1) in a trie.



Week 5

- HTTP

 Protocol for how clients should talk to servers, and vice versa.
* A request includes (at minimum):

« Request method (e.g. GET, POST).

« Page (e.g. /).

« HT TP Version (e.g. HTTP/1.1).

 Website (e.g. Host: www.facebook.com).

* Server responds back, with a status code (e.g. 200, 301, 404).



Week 5

e Status Codes

500 Internal Server Error

503 Service Unavailable



Week 5

e |P Address

« Number to identify addresses of devices on the Internet.
« Formatted as #.#.#.#, where each # is in range O to 255.

« DHCP (Dynamic Host Configuration Protocol) is used for
computers to acquire an |IP address.
* Tools like traceroute let us inspect the path from client to

server.
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o [P Address
« Number to identify addresses of devices on the Internet.
« Formatted as #.#.#.#, where each # is in range O to 255.

« DHCP (Dynamic Host Configuration Protocol) is used for
computers to acquire an |IP address.
* Tools like traceroute let us inspect the path from client to

server.

e TCP
* Transfer Control Protocol.
 Port number corresponds to a service (e.g. 80, 443, 587).
« Sends data in what are essentially numbered packets (1/4, 2/4...)



Week 5

« HTML

« Hypertext Markup Language.

* Describes the structure of a webpage, and contains the content
for that page.

« Nested start tags and closing tags (e.g. <body>, </body>) to
delineate areas.



Week 5

« HTML

« Hypertext Markup Language.

* Describes the structure of a webpage, and contains the content
for that page.

« Nested start tags and closing tags (e.g. <body>, </body>) to
delineate areas.

¢ CSS

 Cascading Style Sheets.
* Describe the aesthetics of web pages.

« Selectors and attributes allow us to selectively modify only
specific content on our page, rather than modify writ large.



Good luck!

Slides are available on the course website.



