
JavaScript: The Basics
CS50 Seminar by Sela Kasepa

What is JavaScript and What can you do
with it?

JavaScript:

● Programming language

● Single-threaded, asynchronous language

● Originally built only to run in browsers (Client-Side JavaScript):
○ Browsers have embedded JavaScript engines (e.g Firefox - SpiderMonkey, Chrome -

v8)

● Run outside browsers via node.js framework (Server-Side JavaScript)

Working with JavaScript in the Browser

JavaScript and the DOM

What is the DOM?
● Programming interface for HTML and XML documents

● A single object that represents an entire web page so that programs can

change the document structure, style, and content.

● represents the document and objects

Accessing the DOM: commonly used interfaces
● document.getElementById(id)

● document.querySelector(selector)

● document.querySelectorAll(selector)

● element.innerHTML

● window.onload

● element.addEventListener()

What is JavaScript
Single-threaded, asynchronous language

What does it mean for JavaScript to be
Single-Threaded

Data Structure that records where we are in the program

Can only do one thing at a time

Has a single Call Stack

What is a Call Stack?

JavaScript Environment

source:http://prashantb.me/ja
vascript-call-stack-event-loop
-and-callbacks/

http://prashantb.me/javascript-call-stack-event-loop-and-callbacks/
http://prashantb.me/javascript-call-stack-event-loop-and-callbacks/
http://prashantb.me/javascript-call-stack-event-loop-and-callbacks/

Asynchronous language
● The JavaScript runtime can only do one thing at a time

● Our browsers have extra features that allow us to perform tasks

Asynchronously:
○ WebAPIs

○ Event Loop

● What happens when function provided by web API is called:
○ function in web API is called

○ function is pushed off stack whilst being executed

○ when done - function is added to task queue

○ event loop monitors task queue; when call stack is empty, it pushes the first function in task

queue onto the stack

Promises, Async ….. Await

● Promise - an object that may produce a value some time in the future.

● Promises can be in one of the following states:

○ fulfilled

○ rejected

○ pending

● Promises enable us to dictate when we want functions to execute.

Constructing a promise
const promiseExample = new Promise((resolve, reject) => {

// asynchronous task

// resolve()

// or

// reject

})

