This is CS50

Think.

Pair. Share.

- Why are we using \mathbf{C} ?
- How can we read and write code that includes variables, conditionals, and loops?
- Why do we care about data types?
- What does it mean to compile a C program?
- Why are we using \mathbf{C} ?
- How can we read and write code that includes variables, conditionals, and loops?
- Why do we care about data types?
- What does it mean to compile a C program?
- How many years will it take to double our llamas?

Part 1
Variables and Types Input and Printing

Variables

calls

Variables

int calls $=4 ; \quad$ calls

Variables

int calls = 4;
 calls

name

Variables

int calls = 4;
 calls

type

Variables

int calls = 4;
 calls

value

Variables

int calls = 4;
 calls

assignment

operator

Variables

int calls = 4;
 calls

type name | value assignment

operator
"Create an integer variable named calls that gets the value 4."

Variables

int $x=50 ;$

X

50

Variables

int $x=50 ;$

X

50
"Create an integer variable named x that gets the value 50."

Think.

Why does C care about data types?
01000001
int 65

01000001

char

'A'

01000001

Variables

int calls = 4;
 calls = 5;

calls

Variables

int calls = 4;
 calls = 5;

calls

Variables

int calls = 4;
calls = 5;
name | value

calls

calls = 5;
name | value

assignment
operator

Operators

int calls = 4;
calls
calls = calls + 1;

5

Operators

$$
\begin{array}{lc}
\text { int calls }=4 ; & \text { calls } \\
\text { calls = calls - 1; } & 3
\end{array}
$$

Operators

int calls = 4;

calls

calls = calls * 2;

Operators

$$
\begin{aligned}
& \text { int calls = 4; } \\
& \text { calls = calls / 2; }
\end{aligned}
$$

calls

Getting input

int calls = get_int("Calls: ");
type name | function call assignment operator

Functions

int calls = get_int("Calls: ");

function call

Functions

int calls = get_int("Calls: ");
function name

Functions

int calls = get_int("Calls: ");

arguments

Functions

int calls = get_int("Calls: ");

function call

Return values

$$
\begin{aligned}
\text { int calls } & =\frac{4}{4} \\
& \text { value }
\end{aligned}
$$

Storing return values

int calls = 4;
type name | value assignment
operator

calls

"Create an integer variable named calls that gets the value 4."

Printing values

int calls = 4;
printf("calls is \%i\n", calls);

Printing values

int calls = 4;
printf("calls is \%i\n", calls);
format code

Printing values

int calls = 4;

printf("calls is \%i\n", calls);
format code
value

Types and format codes

Numbers
int (\%i) long (\%li)

Text

char (\%c)
float (\%f) double (\%f) string (\%s)

Exercise

Create a C program that prompts a user for:

- A name
- An age
- A phone number

Print the values back to the user as confirmation.

Part 2
Breaking down loops and conditionals
if (calls < 1) \{
printf("Call more often!\n");
\}

Boolean expression

if (calls < 1)

printf("Call more often!\n");
conditional
if (calls < 1)
\{
printf("Call more often!");
\}

if (calls < 1)

\{ printf("Call more often!\n");
\} else
\{
printf("Thanks for calling!\n");
\}
if (calls < 1)
\{
printf("Call more often!\n");
\} \uparrow
else
mutually exclusive
$\{$

printf("Thanks for calling!\n");
\}
int i = 0; while (i < 10)
\{

$$
\begin{aligned}
& \text { printf("\%i\n", i); } \\
& \text { i = i }+1 \text {; }
\end{aligned}
$$

\}
initialization

$$
\begin{aligned}
& \text { int } \mathbf{i}=0 ; \\
& \text { while }(i<10) \\
& \left\{\begin{array}{l}
\text { printf("\%i\n", i); } \\
\quad i=i+1 ;
\end{array}\right.
\end{aligned}
$$

Boolean expression
int i $=0$; \downarrow while (i < 10)

$$
\begin{aligned}
& \text { printf("\%i\n", i); } \\
& i=1+1 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { int } i=0 ; \\
& \text { while }(i<10) \\
& \left\{\begin{array}{l}
\text { printf("\%i\n", i); } \\
\left\{\frac{i=i+1 ;}{\uparrow}\right. \\
\text { incrementation }
\end{array}\right.
\end{aligned}
$$

int i = 0;
while (i < 10)

$$
\begin{aligned}
& \text { printf("\%i\n", i); } \\
& \text { i = i }+1 \text {; }
\end{aligned}
$$

for (int i = 0; i < 10; i++) \{ printf("\%i\n", i);
\}
initialization
for (int i = 0; i < 10; i++)
printf("\%i\n", i);

Boolean expression

for (int $i=0 ; \mathbf{i}<10$; i++)
printf("\%i\n", i);
incrementation
for (int $i=0 ; i<10 ; \mathbf{i + +})$
printf("\%i\n", i);
for (int i = 0; i < 10; i++) \{ printf("\%i\n", i);
\}
int n; do
\{
n = get_int("n: ");
\} while (n <= 0);
int n;
do
i

$$
\mathrm{n}=\text { get_int("n: "); }
$$

\}
while (n <= 0);

int n;

do
\{
n = get_int("n: ");
\}
while ($\mathrm{n}<=0$);

Part 3

Lab

https://cs50.harvard.edu/college/2022/fall/labs/1/

- Work an example yourself
- Write down exactly what you did
- Create an algorithm after working multiple examples
- Test your algorithm by hand
- Translate your algorithm to code
- Find errors in your code by running test cases
- Fix errors in your code
- Work an example yourself
- Write down exactly what you did
- Create an algorithm after working multiple examples
- Test your algorithm by hand
- Translate your algorithm to code
- Find errors in your code by running test cases
- Fix errors in your code
- Work an example yourself
- Write down exactly what you did
- Create an algorithm after working multiple examples
- Test your algorithm by hand
- Translate your algorithm to code
- Find errors in your code by running test cases
- Fix errors in your code

We have a population of \mathbf{n} llamas.
Each year, n/3 new llamas are born, and $\mathbf{n} / \mathbf{4}$ llamas pass away.
How many years will it take to have a certain population of llamas?

We have a population of 12 llamas.
Each year, 12/3 new llamas are born, and 12/4 llamas pass away.

How many years will it take to have a population of 13 llamas?

Year 0

Year 0

- Prompt the user for a starting number of llamas
- Prompt the user for a goal number of llamas
- Add and subtract llamas every "year" until we reach the goal number of llamas
- Print the number of years it took to reach the goal number of llamas

This was CS50

