
This is CS50

Think.
Pair.
Share.

● How should we compare algorithms?

● When are structs useful?

● What is recursion?

0 1 2 3 4 5 6

Linear Search

0

1

2

0 1 2 3 4 5 6

Binary Search

3

1

0

Running Time

Linear Search Binary Search

Number of
Steps

Linear Search Binary Search

Number of
Steps 3 steps

Linear Search Binary Search

Number of
Steps 3 steps 3 steps

For any input, what is the
most number of steps my
algorithm will ever take?

How many steps will my
algorithm take for the
very worst case input?

Linear Search Binary Search

Upper Bound

Linear Search Binary Search

Upper Bound n steps

Linear Search Binary Search

Upper Bound n steps log n steps

"On the order of…"

size of problem

tim
e

to
 s

ol
ve

 n n/2

log2 n

size of problem

tim
e

to
 s

ol
ve

O(n) O(n)

O(log n)

size of problem

tim
e

to
 s

ol
ve

O(n)

O(log n)

Linear Search Binary Search

Upper Bound O(n) O(log n)

For any input, what is the
most number of steps my
algorithm will ever take?

For any input, what is the
most number of steps my
algorithm will ever take?

For any input, what is the
least number of steps my
algorithm will ever take?

How many steps will my
algorithm take for the
very best case input?

Linear Search Binary Search

Upper Bound O(n) O(log n)

Lower Bound 1 step 1 step

Linear Search Binary Search

Upper Bound O(n) O(log n)

Lower Bound Ω(1) Ω(1)

5 3 4 8 2 1 7 6

5 3 4 8 2 1 7 6

5 3 4 8 2 1 7 6

5 3 4 8 2 1 7 6

5 3 4 8 2 1 7 6

1 3 4 8 2 5 7 6

1 3 4 8 2 5 7 6

1 3 4 8 2 5 7 6

1 2 4 8 3 5 7 6

1 2 4 8 3 5 7 6

1 2 4 8 3 5 7 6

1 2 3 8 4 5 7 6

1 2 3 8 4 5 7 6

1 2 3 8 4 5 7 6

1 2 3 4 8 5 7 6

1 2 3 4 8 5 7 6

1 2 3 4 8 5 7 6

1 2 3 4 5 8 7 6

1 2 3 4 5 8 7 6

1 2 3 4 5 8 7 6

1 2 3 4 5 8 7 6

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Selection Sort

Upper Bound

Selection Sort

Upper Bound O(n2)

Selection Sort

Upper Bound O(n2)

Lower Bound

Selection Sort

Upper Bound O(n2)

Lower Bound Ω(n2)

Structs

typedef struct
{
 string name;
 int votes;
}
candidate;

typedef struct
{
 string name;
 int votes;
}
candidate;

typedef struct
{
 string name;
 int votes;
}
candidate;

typedef struct
{
 string name;
 int votes;
}
candidate;

candidate president;

candidate president;
president.name = "Alyssa";
president.votes = 10;

Structs and Functions Exercise

Create your own get_candidate function that
prompts the user to input attributes for a candidate.

You may rely on get_string, get_float, etc.

Your function should return a candidate.

Arrays of Structs Exercise

Use your get_candidate function to create an array of
three candidates, each of which should have attributes
input by the user.

name Alice Bob Charlie

votes 2 1 3

candidates[0];

name Alice Bob Charlie

votes 2 1 3

candidates[0].name;

name Alice Bob Charlie

votes 2 1 3

candidates[0].votes;

Recursion

Factorial

1! = 1

Factorial

1! = 1

2! = 2 * 1

Factorial

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

Factorial

1! = 1

2! = 2 * 1

3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

Factorial

 1! = 1

 2! = 2 * 1

 3! = 3 * 2 * 1

4! = 4 * 3 * 2 * 1

Factorial

4! = ?

Factorial

4! = 4 * 3!

Factorial

4! = 4 * 3!
"Recursive call"

Factorial

4! = 4 * 3!

3! = 3 * …

Factorial

4! = 4 * 3!

3! = 3 * 2!

Factorial

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

Factorial

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1

Factorial

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1
"Base case"

Factorial

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1

"Call stack"

Factorial

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1

Factorial

4! = 4 * 3!

3! = 3 * 2 * 1

Factorial

4! = 4 * 3 * 2 * 1

Factorial

4! = 24

Factorial Exercise

Write your own recursive function called factorial.

factorial should take an int and return the factorial of
the number as a parameter.

This was CS50

