
This is CS50



● What are pointers, and how can we become familiar 

with their syntax?

● How can we read and write data from a file?

● What is dynamic memory, and how should we use it?



Pointers
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Pointers
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Pointer Syntax
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Pointer Syntax
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*p;

"go to the value at 
address stored in p"
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type * is a pointer that stores the address of a type.

*x takes a pointer x and goes to the address stored at 
that pointer.

&x takes x and gets its address.



Pointer Prediction Exercise

Visualize the code on the left, step by step. How do the values 
of the variables evolve? It's okay to use made-up addresses.

What will the final values for each variable or pointer be? 
Download, compile, and run pointers.c in VS Code to find out.



int a = 28;
int b = 50;
int *c = &a;

*c = 14;
c = &b;
*c = 25;
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File I/O
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FILE *input = fopen("hi.txt", "r");
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fread(buffer, 1, 3, input);



fread(buffer, 1, 3, input);

Location to read from



fread(buffer, 1, 3, input);

Size of blocks to read (in bytes)



fread(buffer, 1, 3, input);

How many blocks to read



fread(buffer, 1, 3, input);

Location to store blocks
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fread(buffer, 1, 3, input);

Location to store blocks
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fread(buffer, 1, 4, input);



fwrite(buffer, 1, 4, output);
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File Reading Exercise

Create a program, pdf.c, that checks whether a file, passed in 
as a command-line argument, is a PDF. All PDFs will begin with 
a four byte sequence, corresponding to these integers:

37 80 68 70



Dynamic 
Memory



int *hours = malloc(sizeof(int));

?

hours



int *hours = malloc(sizeof(int) * 5);
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*hours = 7;
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*hours = 7;
*(hours + 1) = 9;
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hours[2] = 8;
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hours[2] = 8;
hours[3] = 7;

hours
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Common memory errors

Failing to free every block of memory which we've malloc'd.

Failing to fclose every file we've fopened.

Using more memory than we've allocated.



Debugging Memory Exercise

Debug a program, create.c, that creates the file given as input 
at the command-line. For example,

./create test.c

will create a file, test.c. But our code has three memory errors! 
Can you find and fix them? Try running the below to check:

valgrind ./create test.c



This was CS50


