
This is CS50

● What are pointers, and how can we become familiar

with their syntax?

● How can we read and write data from a file?

● What is dynamic memory, and how should we use it?

Pointers

4

Variables

int calls = 4; calls

Variables

int calls = 4;

name 4

calls

Variables

int calls = 4;

type 4

calls

Variables

int calls = 4;

value 4

calls

Variables

int calls = 4;

4

calls

0x1A

Pointers

int *p = 0x1A;

0x1A

p

Pointers

int *p = 0x1A;

0x1A

p

name

Pointers

int *p = 0x1A;

type 0x1A

p

Pointers

int *p = 0x1A;

value 0x1A

p

Pointers

int *p = 0x1A;

0x1A

p

0xF0

Pointer Syntax

calls;

"value of" 4

calls

0x1A

Pointer Syntax

p;

"value of"

p

0xF0

0x1A

Pointer Syntax

&calls;

"address of" 4

calls

0x1A

Pointer Syntax

&p;

"address of"

p

0xF0

0x1A

4

calls

0x1A

p

Pointer Syntax

*p;

"go to the value at
address stored in p"

0x1A

4

calls

0x1A

p

Pointer Syntax

*p;

"go to the value at
address stored in p"

0x1A

type * is a pointer that stores the address of a type.

*x takes a pointer x and goes to the address stored at
that pointer.

&x takes x and gets its address.

Pointer Prediction Exercise

Visualize the code on the left, step by step. How do the values
of the variables evolve? It's okay to use made-up addresses.

What will the final values for each variable or pointer be?
Download, compile, and run pointers.c in VS Code to find out.

int a = 28;
int b = 50;
int *c = &a;

*c = 14;
c = &b;
*c = 25;

Value

Address

a

Value

Address

Value

Address

b c

File I/O

0x456

hi.txt

hi!

FILE *input = fopen("hi.txt", "r");

0x456

hi.txt

hi!

FILE *input = fopen("hi.txt", "r");

0x456

hi.txt

hi!input

name

FILE *input = fopen("hi.txt", "r");

0x456

hi.txt

hi!input

?

type

FILE *input = fopen("hi.txt", "r");

0x456

hi.txt

hi!input

0x456

value

0x456

hi.txt

hi!input

0x456

hi.txt

input

input

hi.txt

input

hi.txt

buffer

fread(buffer, 1, 3, input);

fread(buffer, 1, 3, input);

Location to read from

fread(buffer, 1, 3, input);

Size of blocks to read (in bytes)

fread(buffer, 1, 3, input);

How many blocks to read

fread(buffer, 1, 3, input);

Location to store blocks

fread(buffer, 1, 3, input);

Location to read from

input

hi.txt

fread(buffer, 1, 3, input);

Size of blocks to read (in bytes)

hi.txt

fread(buffer, 1, 3, input);

How many blocks to read

hi.txt

fread(buffer, 1, 3, input);

Location to store blocks

file_pointer

buffer

file_pointer

buffer

file_pointer

buffer[0]

file_pointer

buffer[1]

file_pointer

buffer[2]

fread(buffer, 1, 4, input);

fwrite(buffer, 1, 4, output);

output_file

buffer

output_file

buffer

File Reading Exercise

Create a program, pdf.c, that checks whether a file, passed in
as a command-line argument, is a PDF. All PDFs will begin with
a four byte sequence, corresponding to these integers:

37 80 68 70

Dynamic
Memory

int *hours = malloc(sizeof(int));

?

hours

int *hours = malloc(sizeof(int) * 5);

hours

? ? ? ? ?

*hours = 7;

hours

7 ? ? ? ?

*hours = 7;
*(hours + 1) = 9;

hours

7 9 ? ? ?

hours[2] = 8;

hours

7 9 8 ? ?

hours[2] = 8;
hours[3] = 7;

hours

7 9 8 7 ?

Heap

Stack

Common memory errors

Failing to free every block of memory which we've malloc'd.

Failing to fclose every file we've fopened.

Using more memory than we've allocated.

Debugging Memory Exercise

Debug a program, create.c, that creates the file given as input
at the command-line. For example,

./create test.c

will create a file, test.c. But our code has three memory errors!
Can you find and fix them? Try running the below to check:

valgrind ./create test.c

This was CS50

