
This is CS50



Think.
Pair.
Share.



● What are the key trade-offs between data structures 

we should consider in decisions about which to use?

● What are some of the primary operations we should 

know how to do on a linked list?

● How can we build our very own hash table?



Scenario



Imagine you work for a 

company that has created a 

digital assistant running on 

a mobile device.



Customer reports indicate 

people have trouble 

activating the assistant 

with its "wake word".



Your team has been asked to 

ensure the voice assistant 

can be awoken with a 

greater variety of words.



What data structure would 

you propose the team build to 

store these words?



Deletion
Insertion
Search



1. Search
2. Insertion
3. Deletion



1. Insertion
2. Search
3. Deletion
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Trade-offs







"Hi!"

NULL

"Hey!"

list

Linked List



Nodes



typedef struct node
{
    string phrase;
    struct node *next;
}
node;
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typedef struct node
{
    string phrase;
    struct node *next;
}
node;
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typedef struct node
{
    string phrase;
    struct node *next;
}
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{
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Creating a Linked List



node *list = NULL;
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node *n = malloc(sizeof(node));
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"Hi!"

nlist



node *n = malloc(sizeof(node));
n->phrase = "Hi!";
n->next = NULL;

"Hi!"

NULL

nlist



list = n;

"Hi!"

NULL

nlist



list = n;

"Hi!"

NULL

n
list



Inserting Nodes



n = malloc(sizeof(node));
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n = malloc(sizeof(node));
n->phrase = "Hey!";
n->next = list;
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Inserting into a Linked List

Download and open list.c.

Find the first TODO.

Starting below that TODO, implement code to add a node to 
the linked list. Ensure that list always points to the head of the 
linked list. Also ensure your new node contains a phrase.

https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94
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free(list);
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node *ptr = list->next;
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Unloading a Linked List

Open the same list.c file.

Find the unload function below main.

Implement unload such that all nodes in the linked list are 
free'd when the function is called. Return true when 
successful.



"Hey!" "Hello!" "Lo there!"
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Hash Function"Hey!" 7



Hashing

Download and open table.c.

Complete hash to return a number, 0–25, depending on the 
first character in the word.

https://gist.github.com/CarterZenke/94a1b6744316bf3989fbb18afcabab9c


A good hash function…

Always gives you the same value for the same input

Produces an even distribution across buckets

Uses all buckets



This was CS50


