
This is CS50

Think.
Pair.
Share.

● What are the key trade-offs between data structures

we should consider in decisions about which to use?

● What are some of the primary operations we should

know how to do on a linked list?

● How can we build our very own hash table?

Scenario

Imagine you work for a

company that has created a

digital assistant running on

a mobile device.

Customer reports indicate

people have trouble

activating the assistant

with its "wake word".

Your team has been asked to

ensure the voice assistant

can be awoken with a

greater variety of words.

What data structure would

you propose the team build to

store these words?

Deletion
Insertion
Search

1. Search
2. Insertion
3. Deletion

1. Insertion
2. Search
3. Deletion

"Hi!"

NULL

"Hey!"

list

Linked List

…

H

I

J

K

L

…

"Hey!" "Hello!"

"Lo there!"

Hash Table

H E

L L O

Y

Trie

P

Trade-offs

"Hi!"

NULL

"Hey!"

list

Linked List

Nodes

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase"Hi!"

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase"Bye!"

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

0x123 next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

0x456 next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

next

node

Creating a Linked List

node *list = NULL;

list

node *n = malloc(sizeof(node));

list

node *n = malloc(sizeof(node));

list

node *n = malloc(sizeof(node));

nlist

node *n = malloc(sizeof(node));
n->phrase = "Hi!";

"Hi!"

nlist

node *n = malloc(sizeof(node));
n->phrase = "Hi!";
n->next = NULL;

"Hi!"

NULL

nlist

list = n;

"Hi!"

NULL

nlist

list = n;

"Hi!"

NULL

n
list

Inserting Nodes

n = malloc(sizeof(node));

"Hi!"

NULL

list

n = malloc(sizeof(node));

"Hi!"

NULL

listn

n = malloc(sizeof(node));
n->phrase = "Hey!";

"Hi!"

NULL

list

"Hey!"

n

n = malloc(sizeof(node));
n->phrase = "Hey!";
n->next = list;

"Hi!"

NULL

list

"Hey!"

n

list = n;

"Hi!"

NULL

"Hey!"

listn

list = n;

"Hi!"

NULL

"Hey!"

list

Inserting into a Linked List

Download and open list.c.

Find the first TODO.

Starting below that TODO, implement code to add a node to
the linked list. Ensure that list always points to the head of the
linked list. Also ensure your new node contains a phrase.

https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94

"Hi!"

NULL

"Hey!"

list

free(list);

"Hi!"

NULL

"Hey!"

list

free(list);

"Hi!"

NULL

"Hey!"

list

"Hi!"

NULL

"Hey!"

list

node *ptr = list->next;

"Hi!"

NULL

"Hey!"

list ptr

free(list);

"Hi!"

NULL

"Hey!"

ptrlist

list = ptr;

"Hi!"

NULL

"Hey!"

ptrlist

list = ptr;

"Hi!"

NULL

ptrlist

ptr = list->next;

"Hi!"

NULL

ptrlist

ptr = list->next;

"Hi!"

NULL

list

free(list);

"Hi!"

NULL

list

list = ptr;

list

Unloading a Linked List

Open the same list.c file.

Find the unload function below main.

Implement unload such that all nodes in the linked list are
free'd when the function is called. Return true when
successful.

"Hey!" "Hello!" "Lo there!"

…

H

I

J

K

L

…

"Hey!" "Hello!"

"Lo there!"

… …

7 H

8 I

9 J

10 K

11 L

… …

"Hey!" "Hello!"

"Lo there!"

Hash Function"Hey!" 7

Hashing

Download and open table.c.

Complete hash to return a number, 0–25, depending on the
first character in the word.

https://gist.github.com/CarterZenke/94a1b6744316bf3989fbb18afcabab9c

A good hash function…

Always gives you the same value for the same input

Produces an even distribution across buckets

Uses all buckets

This was CS50

