
Introduction to Node.js:
Using Server-Side

JavaScript
Nathalie Acosta ‘25

What is Node.js and why should I use it?

● Node.js is a JavaScript runtime environment

that lets you run JavaScript outside of the

browser

● It’s often used to build back-end services (your

server)

● Application Programming Interfaces (APIs) are

a prominent feature of Node.js

Pros of Node.js

● It’s best to build highly-scalable,

data-intensive, real-time

applications

● Can use JavaScript everywhere

(client-side and server-side)

● Large ecosystem of open-source

libraries and packages

Let’s build a to do app!

Let’s get started!

● Navigate to https://code.cs50.io/

● Make a new directory called todo

● Type node --version to make sure node is installed

● Create app.js

https://code.cs50.io/

Run Node

● Let’s test that it’s working. Type the following:

console.log(“hello CS50!”);

● Run it in the terminal with node app.js

Creating a server

● One of the most popular Node

packages is called Express (it

has 22,000,000 weekly

downloads!)

● It is a minimal web application

framework that helps us set up

a server and create APIs

Setting up package.json

● First, let’s set up our package.json

● Package.json is a universal file in Node.js that contains metadata

about the Node packages installed, the project name and

description, and other details

● Run npm init to get one!

Creating a simple server with Express, part 1

● Now we can install NPM (Node Package Manager) packages!

● Run npm install express to install Express
○ You can read more about Express on their website https://expressjs.com/

● This adds stuff to package.json and package-lock.json (a more

specific version of package.json we will not touch) and also creates

the folder full of our installs called node_modules

● To let app.js know to use the Express module, we have to use:

const express = require(“express”);

https://expressjs.com/

Creating a simple server with Express, part 2

● Now to get the actual web server going, we’ll have to type the following code:

const app = express();

const port = 3000;

app.listen(port, () => {

console.log(`CS50 app listening on port ${port}`);

});

Calls the express function and puts the new Express
app inside the variable app

Defines the port to listen on

Listens for the app on the port and does whatever
inside the brackets. () => { *does stuff here* }

Where is my server?

● Look for the link to your new Express web server under PORTS in the

terminal (right click and click ports if you hid it before)

● However, this is annoying to do every time, so let’s install another

great NPM package that helps us in our development environment

(no need to re-open each time!)

● Run npm install nodemon

● In package.json, let’s type up a script we only need to run once!

"dev": "nodemon app.js”

Routes in Express

● app.METHOD(PATH, HANDLER)is the general pattern for how to
handle client requests to a particular endpoint (whether this be
via GET request, POST request, etc.)

● First things first—we need to set up a GET request for our
homepage! Let’s type the following:

app.get('/', (req, res) => {

res.send('Hello World!')

}) Sends the text “Hello World!”

How to serve up files using Express

● We can create html files and use res.sendFile,

but we want to serve dynamic content

● So let’s use a templating engine! A well known

one is Pug (it also sounds cute)
○ Their documentation can be found at

https://pugjs.org/api/getting-started.html

● Run npm install pug

● Write the code:

app.set('view engine', 'pug')

Sets the templating/view engine for Express as Pug

(there are others so it’s important to specify). This is

like Flask but Javascript!

https://pugjs.org/api/getting-started.html

Working with Pug, part 1

● Let’s create a views directory with our files, and call our homepage index.pug

● Pug’s syntax can look a bit strange, but it is easy to familiarize yourself with it
○ (and you don’t have to use Pug if you don’t want to!)

html

head

title= title

body

h1= message

Working with Pug, part 2

● Now we can give information from our Express/Node server

directly to our homepage! Here’s the code:

app.get('/', (req, res) => {

res.render('index', { title: 'Hey', message: 'Hello

there!' })

})

Request from the frontend

● First, let’s build our simple form

● This is how it looks like in Pug

● We need to make sure Express can read our

request in a JSON (JavaScript Object Notation: a

comma-separated key:value list) format:

app.use(express.urlencoded({ extended :

true}));

app.use(express.json());

Receive the request from the backend

● Now in our backend, we have to get the request that was posted

● Let’s confirm it with

app.post('/', (req, res) => {

console.log(req.body); })

res.redirect("/");

● Hurray! Our frontend is sending a request to our backend. Let’s send

a response back

Create a SQLite3 database

● Time to store the data inside a SQLite database! Run npm install

sqlite3
○ Documentation at https://github.com/TryGhost/node-sqlite3/wiki/API

● Run sqlite3 todos.db

CREATE TABLE todo(

name TEXT NOT NULL);

https://github.com/TryGhost/node-sqlite3/wiki/API

Store our request inside the database

● First, have to connect to our database

const sqlite3 = require('sqlite3').verbose();

const db = new sqlite3.Database('./todos.db');

● Then, we can insert into our database (or run any command!)

let todo = req.body.todo;

db.run("INSERT INTO todos(name) VALUES(?)", todo);

Send a response back to the frontend

Selects all todos

Push to the array
Push to array

Select todos

Render index with the todolist variable

And finally, access the response from the frontend!

for todo in todolist

li= todo

else

p there are no todos... yet

Some final notes

● You don’t have to use SQLite if you don’t want to; if you want to

learn more, I recommend using MongoDB if you want to publish

your website

● You don’t have to use Pug if you don’t want to; if you want to learn

more, I recommend implementing a frontend JavaScript library like

React or Vue for a more professional touch

● Ultimately, there is no best tech stack. If Node.js doesn’t appeal to

you you can implement your final project in Flask or other

framework!

Thank you for your
attention!

The final version of the code is on my Github:
https://github.com/nathalieacosta/todo-

final

https://github.com/nathalieacosta/todo-final

