
https://www.nytimes.com/1996/12/01/magazine/little-bug-big-
bang.html

FAST FORWARD

By James Gleick

Dec. 1, 1996

See the article in its original context from

December 1, 1996, Section 6, Page 38 Buy Reprints

VIEW ON TIMESMACHINE

TimesMachine is an exclusive benefit for home
delivery and digital subscribers.

About the Archive

This is a digitized version of an article from The Times’s print archive, before the start of online

publication in 1996. To preserve these articles as they originally appeared, The Times does not alter,

edit or update them.

Occasionally the digitization process introduces transcription errors or other problems; we are

continuing to work to improve these archived versions.

IT TOOK THE European Space Agency 10 years and $7 billion to produce Ariane 5, a giant
rocket capable of hurling a pair of three-ton satellites into orbit with each launch and
intended to give Europe overwhelming supremacy in the commercial space business.

All it took to explode that rocket less than a minute into its maiden voyage last June,
scattering fiery rubble across the mangrove swamps of French Guiana, was a small
computer program trying to stuff a 64-bit number into a 16-bit space.

One bug, one crash. Of all the careless lines of code recorded in the annals of computer
science, this one may stand as the most devastatingly efficient. From interviews with
rocketry experts and an analysis prepared for the space agency, a clear path from an

Little Bug, Big Bang

https://www.nytimes.com/section/magazine
https://www.nytimes.com/by/james-gleick
https://store.nytimes.com/collections/new-york-times-page-reprints?utm_source=nytimes&utm_medium=article-page&utm_campaign=reprints
http://timesmachine.nytimes.com/timesmachine/1996/12/01/402311.html

arithmetic error to total destruction emerges.

To play the tape backward:

At 39 seconds after launch, as the rocket reached an altitude of two and a half miles, a self-
destruct mechanism finished off Ariane 5, along with its payload of four expensive and
uninsured scientific satellites. Self-destruction was triggered automatically because
aerodynamic forces were ripping the boosters from the rocket.

This disintegration had begun instantaneously when the spacecraft swerved off course
under the pressure of the three powerful nozzles in its boosters and main engine. The rocket
was making an abrupt course correction that was not needed, compensating for a wrong
turn that had not taken place.

Steering was controlled by the on-board computer, which mistakenly thought the rocket
needed a course change because of numbers coming from the inertial guidance system. That
device uses gyroscopes and accelerometers to track motion. The numbers looked like flight
data -- bizarre and impossible flight data -- but were actually a diagnostic error message.
The guidance system had in fact shut down.

This shutdown occurred 36.7 seconds after launch, when the guidance system's own
computer tried to convert one piece of data -- the sideways velocity of the rocket -- from a 64-
bit format to a 16-bit format. The number was too big, and an overflow error resulted.

When the guidance system shut down, it passed control to an identical, redundant unit,
which was there to provide backup in case of just such a failure. But the second unit had
failed in the identical manner a few milliseconds before. It was running the same software.

This bug belongs to a species that has existed since the first computer programmers
realized they could store numbers as sequences of bits, atoms of data, ones and zeroes:
1001010001101001. . . . A bug like this might crash a spreadsheet or word processor on a bad
day. Ordinarily, though, when a program converts data from one form to another, the
conversions are protected by extra lines of code that watch for errors and recover gracefully.
Indeed, many of the data conversions in the guidance system's programming included such

Sign up for The New York Times Magazine Newsletter The best of The New

York Times Magazine delivered to your inbox every week, including exclusive

feature stories, photography, columns and more. Get it sent to your inbox.

protection. But in this case, the programmers had decided that this particular velocity figure
would never be large enough to cause trouble. After all, it never had been before. Unluckily,
Ariane 5 was a faster rocket than Ariane 4.

One extra absurdity: the calculation containing the bug, which shut down the guidance
system, which confused the on-board computer, which forced the rocket off course, actually
served no purpose once the rocket was in the air. Its only function was to align the system
before launch. So it should have been turned off. But engineers chose long ago, in an earlier
version of the Ariane, to leave this function running for the first 40 seconds of flight -- a
''special feature'' meant to make it easy to restart the system in the event of a brief hold in
the countdown.

The Europeans hope to launch a new Ariane 5 next spring, this time with a newly
designated ''software architect'' who will oversee a process of more intensive and, they
hope, realistic ground simulation. Simulation is the great hope of software debuggers
everywhere, though it can never anticipate every feature of real life. ''Very tiny details can
have terrible consequences,'' says Jacques Durand, head of the project, in Paris. ''That's not
surprising, especially in a complex software system such as this is.''

These days, we have complex software systems everywhere. We have them in our
dishwashers and in our wristwatches, though they're not quite so mission-critical. We have
computers in our cars -- from 15 to 50 microprocessors, depending how you count: in the
engine, the transmission, the suspensions, the steering, the brakes and every other major
subsystem. Each runs its own software, thoroughly tested, simulated and debugged, no
doubt.

Bill Powers, vice president for research at Ford, says that cars' computing power is
increasingly devoted not just to actual control but to diagnostics and contingency planning --
''Should I abort the mission, and if I abort, where would I go?'' he says. ''We also have
what's called a limp-home strategy.'' That is, in the worst case, the car is supposed to behave
more or less normally, like a car of the pre-computer era, instead of, say, taking it upon itself
to swerve into the nearest tree.

The European investigators chose not to single out any particular contractor or department
for blame. ''A decision was taken,'' they wrote. ''It was not analyzed or fully understood.''
And ''the possible implications of allowing it to continue to function during flight were not
realized.'' They did not attempt to calculate how much time or money was saved by omitting
the standard error-protection code.

''The board wishes to point out,'' they added, with the magnificent blandness of many official
accident reports, ''that software is an expression of a highly detailed design and does not fail
in the same sense as a mechanical system.'' No. It fails in a different sense. Software built up

over years from millions of lines of code, branching and unfolding and intertwining, comes to
behave more like an organism than a machine.

''There is no life today without software,'' says Frank Lanza, an executive vice president of
the American rocket maker Lockheed Martin. ''The world would probably just collapse.''
Fortunately, he points out, really important software has a reliability of 99.9999999 percent.
At least, until it doesn't.

