
This is CS50
Week 3

Today
• How can we compare algorithms

with and notation?

• What are structs?

• How can we make use of recursion?

O Ω

Searching and
Sorting

(and and notation)O Ω

Matthew LucasAlyssa Douglas CeceliaSamia Ramya

Matthew LucasAlyssa Douglas CeceliaSamia Ramya

LucasAlyssa Douglas CeceliaSamia RamyaMatthew

RamyaMatthew LucasAlyssa Douglas CeceliaSamia

RamyaMatthew DouglasSamia LucasCeceliaAlyssa

MatthewLucasAlyssa DouglasCecelia SamiaRamya

Lucas MatthewAlyssa DouglasCecelia SamiaRamya

MatthewAlyssa DouglasCecelia SamiaRamyaLucas

MatthewAlyssa Douglas SamiaRamyaLucasCecelia

MatthewDouglas SamiaRamyaLucasCeceliaAlyssa

Linear Search Binary Search

How many steps did each algorithm take?

Linear Search Binary Search

How many steps did each algorithm take?

3 3

Linear Search Binary Search

What's the greatest number of steps
this algorithm will ever take?

Linear Search Binary Search

What's the greatest number of steps
this algorithm will ever take?

log2(7)7

Linear Search Binary Search

What's the greatest number of steps
this algorithm will ever take?

N log2(N)

Linear Search Binary Search

What's (approximately!) the greatest number of steps
this algorithm will ever take?

O(N) O(log(N))

Matthew LucasAlyssa Douglas CeceliaSamia Ramya

Linear Search

Matthew LucasAlyssa Douglas CeceliaSamia Ramya

Linear Search

Binary Search

Alex LucasAlyssa CeceliaAmulya RamyaAaron

Binary Search

Alex LucasAlyssa CeceliaAmulya RamyaAaron

Linear Search Binary Search

How many steps did each algorithm take?

Linear Search Binary Search

How many steps did each algorithm take?

1 1

Linear Search Binary Search

What's the fewest number of steps
this algorithm could ever take?

Linear Search Binary Search

What's the fewest number of steps
this algorithm could ever take?

1 1

Linear Search Binary Search

What's (approximately!) the fewest number of steps
this algorithm will ever take?

Ω(1) Ω(1)

Thought Question
• Suppose that you create a new algorithm and

assess its runtime.

• The fewest steps this algorithm will ever take is 2,
and only 2.

• What is the notation for this algorithm?Ω

Common Notations
•

•

•

•

O(1)

O(log(N))

O(N)

O(N2)

•

•

•

•

Ω(1)

Ω(log(N))

Ω(N)

Ω(N2)

Sort

Algorithm

Merge Sort

Selection Sort

Bubble Sort

O Ω
O(Nlog(N)) Ω(Nlog(N))

O(N2) Ω(N2)

O(N2) Ω(N)

Algorithm reversed50000.txt sorted50000.txt

Sort1

Sort2

Sort3

Structs

typedef struct
{
 string name;
 int votes;
}
candidate;

typedef struct
{
 string name;
 int votes;
}
candidate;

Create a new "type",
which holds a collection
of other basic types.

typedef struct
{
 string name;
 int votes;
}
candidate;

Give the struct a name
that can be re-used in
the rest of the file.

typedef struct
{
 string name;
 int votes;
}
candidate;

Known as a structure's
members.

typedef struct
{
 string name;
 int votes;
}
candidate;

candidate president;

typedef struct
{
 string name;
 int votes;
}
candidate;

candidate president;
president.name = "Samia";

Samia

typedef struct
{
 string name;
 int votes;
}
candidate;

candidate president;
president.name = "Samia";
president.votes = 10;

Samia

10

typedef struct
{
 string name;
 int votes;
}
candidate;

candidate candidates[4];

Most Votes
• Create an array of candidates.

• Search the array to find the most votes awarded
to any single candidate.

• Print out that candidate's name.

Recursion

Factorial

1! = 1
2! = 2 * 1
3! = 3 * 2 * 1
4! = 4 * 3 * 2 * 1

Factorial

 1! = 1
 2! = 2 * 1
 3! = 3 * 2 * 1
4! = 4 * 3 * 2 * 1

Factorial

4! = ?

Factorial

4! = 4 * 3!
Recursive call

Factorial

4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1
Base case

Factorial

4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1

Call stack

Factorial

4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1

Factorial

4! = 4 * 3!
3! = 3 * 2 * 1

Factorial

4! = 4 * 3 * 2 * 1

Creating a Factorial Function
• In a file called factorial.c, implement a

function called factorial to return the
factorial of a given number.

• Call factorial from main and print the result
from factorial.

This is CS50
Week 3

