This is CS50
Week 5

Scan your HUID at the back table for attendance

Open code.cs50.io!




https://carterzenke.me/section



https://carterzenke.me/section

Think, Pair, Share

e \What are you excited about
from this week's lecture?

e \What do you want to learn
more about?



What are the key trade-offs between data structures
we should consider in decisions about which to use?
What are some of the primary operations we should

know how to do on a linked list?

How can we build our very own hash table?



Scenario



Imagine you work for a
company that has created a
digital assistant running on

a mobile device.



Customer reports indicate
people have trouble
activating the assistant

with its "wake word".



Your team has been asked to
ensure the voice assistant
can be awoken with a

greater variety of words.



What data structure would
you propose the team build to

store these words?



Deletion
INnsertion
Search



1. Search
2. Insertion
3. Deletion



1. Insertion
2. Search
3. Deletion



Linked List

list

1 Hey! 1

IIHi!II

NULL




"Hey!" —> "Hello!"

"Lo there!"

Hash Table



Trie



Trade-offs



& speller

Big Board spelier

Rank Name Time Load Check Size Unload Memory Heap Si

1 Thomas 6.136s 1.234s 4902s 0.000s 0.000 s 12.3 kB 4.6 kB
Ballatore

2 CarterZenke 7119s 0.932s 5.651s 0.000s 0.536's 8.0 MB 8.0 MB

3 zachatoch1 10.248 s 1.079 s 8.319s 0.000s 0.850 s 8.0 MB 8.0MB 9t

Time is a sum of the times required to spell-check texts/*.txt using dictionaries/large . Memory is a
measure of maximal heap and stack utilization when spell-checking texts/holmes.txt using
dictionaries/large.

e ——————————————————



& speller

Big Board spelier

Rank Name Time Load Check Size Unload Memory Heap Si

1 Thomas 6.136s 1.234s 4902s 0.000s 0.000 s 12.3 kB 4.6 kB
Ballatore

2 CarterZenke 7119s 0.932s 5.651s 0.000s 0.536's 8.0 MB 8.0 MB

3 zachatoch1 10.248 s 1.079 s 8.319s 0.000s 0.850 s 8.0 MB 8.0MB 9t

Time is a sum of the times required to spell-check texts/*.txt using dictionaries/large . Memory is a
measure of maximal heap and stack utilization when spell-checking texts/holmes.txt using
dictionaries/large.

e ——————————————————



Embedded EthiCS



About me

William Cochran
Postdoctoral Fellow in Philosophy
Embedded EthiCS program @ Harvard

The Embedded EthiCS course modules teach students

to...

identify ethical and social reason through ethical and
issues social issues reasoned position

communicate their design ethically and

socially responsible
systems




1. Run time (speed)
2. Memory usage (space)
3. Time to implementation

Privacy &
Security



Privacy ~ the ability to control information about oneself

Security ~ the ability to protect information from unauthorized access



In groups of 2-4, imagine that
you’re a team that has been
tasked with developing each of
the following (A-D). Ask
yourselves: which of these
merits taking the extra steps to
ensure privacy/security and
which does not? Be prepared
to give reasons for your
answers.

A mobile app for a ‘smart’ water filter that helps
users track their weekly water consumption.

A spell checker that stores a dictionary of words
for fast lookup and to suggest corrections for
misspelled words.

A database containing the average high school
GPA of each Harvard freshman class from
2018-2022, as part of a study on the impact of
COVID on academic performance among high
schoolers.

A voice assistant app that is having trouble with its
wake word recognizing people with non-English
accents, and you've been asked to gather and
store voice recordings of users to help address the
error.



Nodes



typedef struct node
{

string phrase;

struct node *next;

¥

node;




node

struct node




node

string phrase phrase




node

string phrase "Hil" phrase




string phrase

node

IIBye! 1

phrase



node

phrase

node *next

next




node *next

node

Ox123

phrase

next



node *next

node

Ox456

phrase

next



node

phrase

next




Creating a Linked List



Creating a Linked List

Download and open list.c.


https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94

node *1list = NULL;

list



node *n = malloc(sizeof(node));

list



malloc(sizeof(node))

list




node *n = malloc(sizeof(node))

list n
Y




n->phrase = "Hil!"

list

Y

III_”!II




NULL

Y

III_”!II

NULL




list

Y

III_”!II

NULL




list

Y

III_”!II

NULL




Inserting Nodes



malloc(sizeof(node));

list

Y

III_”!II

NULL




malloc(sizeof(node))

list

Y

III_”!II

NULL




n->phrase

IIHey! 11

11 Hey! 1

list

Y

III_”!II

NULL




n->next = list

list

11 Hey! 1

Y

III_”!II

NULL




list

11 Hey! 1

Y

III_”!II

NULL




list

11 Hey! 1

Y

III_”!II

NULL




Inserting into a Linked List

Download and open list.c.
Find the first TODO.

Starting below that TODO, implement code to add a node to
the linked list. Ensure that list always points to the head of the
linked list. Also ensure your new node contains a phrase.


https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94

list

11 Hey! 1

Y

III_”!II

NULL




free(list);

list

III_”!II

NULL




free(list);

list

III_”!II

NULL




list

11 Hey! 1

Y

III_”!II

NULL




node *ptr = list->next;

list tr
y _°F Y

IIHey!II III_”!II

NULL




free(list);

list

ptr

Y

III_”!II

NULL




list

ptr

Y

III_”!II

NULL




list

ptr

Y

III_”!II

NULL




ptr

list->next;

list

ptr

Y

III_”!II

NULL




ptr

list->next;

list

III_”!II

NULL




free(list);

list




list




Unloading a Linked List

Open the same list.c file.
Find the unload function below main.

Implement unload such that all nodes in the linked list are
free'd when the function is called. Return true when
successful.



1 Hey! 1

"Hello!"

"Lo there!"




1| Hey! 1

"Hello!"

"Lo there!"




1| Hey! 1

10

11

"Hello!"

"Lo there!"




1 Hey! 1

—>

Hash Function

—>




Speller



A good hash function...

Always gives you the same value for the same input
Produces an even distribution across buckets

Uses all buckets



This was CS50



