
This is CS50
Week 5

Scan your HUID at the back table for attendance
Open code.cs50.io!

https://carterzenke.me/section

https://carterzenke.me/section

Think, Pair, Share

● What are you excited about
from this week's lecture?

● What do you want to learn
more about?

● What are the key trade-offs between data structures

we should consider in decisions about which to use?

● What are some of the primary operations we should

know how to do on a linked list?

● How can we build our very own hash table?

Scenario

Imagine you work for a

company that has created a

digital assistant running on

a mobile device.

Customer reports indicate

people have trouble

activating the assistant

with its "wake word".

Your team has been asked to

ensure the voice assistant

can be awoken with a

greater variety of words.

What data structure would

you propose the team build to

store these words?

Deletion
Insertion
Search

1. Search
2. Insertion
3. Deletion

1. Insertion
2. Search
3. Deletion

"Hi!"

NULL

"Hey!"

list

Linked List

…

H

I

J

K

L

…

"Hey!" "Hello!"

"Lo there!"

Hash Table

H E

L L O

Y

Trie

P

Trade-offs

Embedded EthiCS

About me
William Cochran
Postdoctoral Fellow in Philosophy
Embedded EthiCS program @ Harvard

1. Run time (speed)
2. Memory usage (space)
3. Time to implementation

Privacy &
Security

Privacy ~ the ability to control information about oneself

Security ~ the ability to protect information from unauthorized access

A. A mobile app for a ‘smart’ water filter that helps
users track their weekly water consumption.

B. A spell checker that stores a dictionary of words
for fast lookup and to suggest corrections for
misspelled words.

C. A database containing the average high school
GPA of each Harvard freshman class from
2018-2022, as part of a study on the impact of
COVID on academic performance among high
schoolers.

D. A voice assistant app that is having trouble with its
wake word recognizing people with non-English
accents, and you’ve been asked to gather and
store voice recordings of users to help address the
error.

In groups of 2-4, imagine that
you’re a team that has been
tasked with developing each of
the following (A-D). Ask
yourselves: which of these
merits taking the extra steps to
ensure privacy/security and
which does not? Be prepared
to give reasons for your
answers.

Nodes

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase"Hi!"

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase"Bye!"

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

0x123 next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

0x456 next

node

typedef struct node
{
 string phrase;
 struct node *next;
}
node;

phrase

next

node

Creating a Linked List

Creating a Linked List

Download and open list.c.

https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94

node *list = NULL;

list

node *n = malloc(sizeof(node));

list

node *n = malloc(sizeof(node));

list

node *n = malloc(sizeof(node));

nlist

node *n = malloc(sizeof(node));
n->phrase = "Hi!";

"Hi!"

nlist

node *n = malloc(sizeof(node));
n->phrase = "Hi!";
n->next = NULL;

"Hi!"

NULL

nlist

list = n;

"Hi!"

NULL

nlist

list = n;

"Hi!"

NULL

n
list

Inserting Nodes

n = malloc(sizeof(node));

"Hi!"

NULL

list

n = malloc(sizeof(node));

"Hi!"

NULL

listn

n = malloc(sizeof(node));
n->phrase = "Hey!";

"Hi!"

NULL

list

"Hey!"

n

n = malloc(sizeof(node));
n->phrase = "Hey!";
n->next = list;

"Hi!"

NULL

list

"Hey!"

n

list = n;

"Hi!"

NULL

"Hey!"

listn

list = n;

"Hi!"

NULL

"Hey!"

list

Inserting into a Linked List

Download and open list.c.

Find the first TODO.

Starting below that TODO, implement code to add a node to
the linked list. Ensure that list always points to the head of the
linked list. Also ensure your new node contains a phrase.

https://gist.github.com/CarterZenke/f9aa3a11b380694560b929d078b1cc94

"Hi!"

NULL

"Hey!"

list

free(list);

"Hi!"

NULL

"Hey!"

list

free(list);

"Hi!"

NULL

"Hey!"

list

"Hi!"

NULL

"Hey!"

list

node *ptr = list->next;

"Hi!"

NULL

"Hey!"

list ptr

free(list);

"Hi!"

NULL

"Hey!"

ptrlist

list = ptr;

"Hi!"

NULL

"Hey!"

ptrlist

list = ptr;

"Hi!"

NULL

ptrlist

ptr = list->next;

"Hi!"

NULL

ptrlist

ptr = list->next;

"Hi!"

NULL

list

free(list);

"Hi!"

NULL

list

list = ptr;

list

Unloading a Linked List

Open the same list.c file.

Find the unload function below main.

Implement unload such that all nodes in the linked list are
free'd when the function is called. Return true when
successful.

"Hey!" "Hello!" "Lo there!"

…

H

I

J

K

L

…

"Hey!" "Hello!"

"Lo there!"

… …

7 H

8 I

9 J

10 K

11 L

… …

"Hey!" "Hello!"

"Lo there!"

Hash Function"Hey!" 7

Speller

A good hash function…

Always gives you the same value for the same input

Produces an even distribution across buckets

Uses all buckets

This was CS50

