Introduction to Artificial Intelligence with Python

Knowledge

knowledge-based agents

agents that reason by operating on internal representations of knowledge

If it didn't rain, Harry visited Hagrid today. Harry visited Hagrid or Dumbledore today, but not both. Harry visited Dumbledore today. Harry did not visit Hagrid today. It rained today.

sentence

an assertion about the world in a knowledge representation language

Propositional Logic

Proposition Symbols

P

Logical Connectives

not

implication

$\boldsymbol{\bigwedge}$ and

V Or

biconditional

Not (¬)

And (A)

P	Q	$P \land Q$
false	false	false
false	true	false
true	false	false
true	true	true

P	Q	PvQ
false	false	false
false	true	true
true	false	true
true	true	true

Implication (\rightarrow)

P	Q	$P \rightarrow Q$
false	false	true
false	true	true
true	false	false
true	true	true

Biconditional (\leftrightarrow)

P	\underline{Q}	$P \leftrightarrow Q$
false	false	true
false	true	false
true	false	false
true	true	true

mode

assignment of a truth value to every

propositional symbol (a "possible world")

mode

$\{P = true, Q = false\}$

P: It is raining.*Q*: It is a Tuesday.

knowledge-based agent

Entaiment

In every model in which sentence α is true, sentence β is also true.

$\alpha \models \beta$

If it didn't rain, Harry visited Hagrid today. Harry visited Hagrid or Dumbledore today, but not both. Harry visited Dumbledore today. Harry did not visit Hagrid today. It rained today.

inference the process of deriving new sentences from old ones

P: It is a Tuesday.Q: It is raining.R: Harry will go for a run.

$\mathsf{KB:} \quad (P \land \neg Q) \to R$

Inference: R

P

Inference Algorithms

Does KB = 0 $\mathbf{\hat{\mathbf{P}}}$

Model Checking

Model Checking

- To determine if $KB \models \alpha$:
 - Enumerate all possible models.
 - KB entails α .
 - Otherwise, KB does not entail α .

• If in every model where KB is true, α is true, then

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run. KB: $(P \land \neg Q) \rightarrow R$ P $\neg Q$ Query: R

P	\underline{Q}	R	KB
false	false	false	
false	false	true	
false	true	false	
false	true	true	
true	false	false	
true	false	true	
true	true	false	
true	true	true	

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run. KB: $(P \land \neg Q) \rightarrow R$ P $\neg Q$ Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

P: It is a Tuesday. Q: It is raining. R: Harry will go for a run. KB: $(P \land \neg Q) \rightarrow R$ P $\neg Q$ Query: R

P	\underline{Q}	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

Knowledge Engineering

People

Col. Mustard

Prof. Plum

Ms. Scarlet

Rooms

Ballroom

Kitchen

Library

Weapons

Knife

Revolver

Wrench

People

Rooms

Weapons

People

Rooms

Weapons

Rooms

Rooms

Propositional Symbols

mustard plum scarlet ballroom kitchen library

knife revolver wrench

(mustard v plum v scarlet)

(ballroom v kitchen v library)

(knife v revolver v wrench)

plum

¬mustard v ¬library v ¬revolver

Logic Puzzles

- to a different one of the four houses: Gryffindor, Hufflepuff, Ravenclaw, and Slytherin House.
- Gilderoy belongs to Gryffindor or Ravenclaw.
- Pomona does not belong in Slytherin.
- Minerva belongs to Gryffindor.

Gilderoy, Minerva, Pomona and Horace each belong

Logic Puzzles Propositional Symbols

GilderoyGryffindor GilderoyHufflepuff GilderoyRavenclaw GilderoySlytherin

PomonaGryffindor PomonaHufflepuff PomonaRavenclaw PomonaSlytherin MinervaGryffindor MinervaHufflepuff MinervaRavenclaw MinervaSlytherin

HoraceGryffindor HoraceHufflepuff HoraceRavenclaw HoraceSlytherin

LOGIC PUZZIES

(GilderoyGryffindor v GilderoyRavenclaw)

(PomonaSlytherin $\rightarrow \neg PomonaHufflepuff)$

(MinervaRavenclaw $\rightarrow \neg GilderoyRavenclaw)$

Mastermind

Inference Rules

Modus Ponens

If it is raining, then Harry is inside.

It is raining.

Harry is inside.

Modus Ponens

 $\alpha \rightarrow \beta$

X

B

And Elimination

Harry is friends with Ron and Hermione.

Harry is friends with Hermione.

And Elimination

 $\alpha \wedge \beta$

X

Double Negation Elimination

It is not true that Harry did not pass the test.

Harry passed the test.

Double Negation Elimination

Ø

Implication Elimination

If it is raining, then Harry is inside.

It is not raining or Harry is inside.

Implication Elimination

 $\neg \alpha \vee \beta$

Biconditional Elimination

It is raining if and only if Harry is inside.

If it is raining, then Harry is inside, and if Harry is inside, then it is raining.

Biconditional Elimination

 $\alpha \leftrightarrow \beta$

 $(\alpha \longrightarrow \beta) \land (\beta \longrightarrow \alpha)$

It is not true that both Harry and Ron passed the test.

Harry did not pass the test or Ron did not pass the test.

$\neg(\alpha \land \beta)$

It is not true that Harry or Ron passed the test.

Harry did not pass the test and Ron did not pass the test.

$\neg(\alpha \lor \beta)$

 $\neg \alpha \wedge \neg \beta$

Distributive Property

 $(\alpha \wedge (\beta \vee \gamma))$

 $(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$

Distributive Property

 $(\alpha \vee (\beta \wedge \gamma))$

$(\alpha \lor \beta) \land (\alpha \lor \gamma)$

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

Theorem Proving

- initial state: starting knowledge base
- actions: inference rules
- goal test: check statement we're trying to prove
- path cost function: number of steps in proof

transition model: new knowledge base after inference

Resolution

(Ron is in the Great Hall) v (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

PvQ $\neg P$

 \mathcal{Q}

 $P \vee Q_1 \vee Q_2 \vee \ldots \vee Q_n$

 $\neg P$

(Ron is in the Great Hall) v (Hermione is in the library) (Ron is not in the Great Hall) v (Harry is sleeping)

(Hermione is in the library) v (Harry is sleeping)

Pv Q $\neg P \lor R$

QVR

$P \lor Q_1 \lor Q_2 \lor \dots \lor Q_n$ $\neg P \lor R_1 \lor R_2 \lor \dots \lor R_m$

$Q_1 \vee Q_2 \vee \ldots \vee Q_n \vee R_1 \vee R_2 \vee \ldots \vee R_m$

clause a disjunction of literals e.g. $P \lor Q \lor R$

conjunctive normal form logical sentence that is a conjunction of

logical sentence that clauses

 $[e.g. (A \lor B \lor C) \land (D \lor \neg E) \land (F \lor G)]$

Conversion to CNF

- Eliminate biconditionals
 - turn ($\alpha \leftrightarrow \beta$) into ($\alpha \rightarrow \beta$) $\land (\beta \rightarrow \alpha)$
- Eliminate implications
 - turn ($\alpha \rightarrow \beta$) into $\neg \alpha \lor \beta$
- Move ¬ inwards using De Morgan's Laws
 - e.g. turn $\neg(\alpha \land \beta)$ into $\neg \alpha \lor \neg \beta$
- Use distributive law to distribute v wherever possible

Conversion to CNF $(P \lor Q) \rightarrow R$ $\neg (P \lor Q) \lor R$ $(\neg P \land \neg Q) \lor R$ $(\neg P \lor R) \land (\neg Q \lor R)$

eliminate implication

De Morgan's Law

distributive law

Inference by Resolution

Pv Q $\neg P \lor R$

PvQvS $\neg P \lor R \lor S$

$(Q \vee S \vee R \vee S)$

PvQvS $\neg P \lor R \lor S$

$(Q \vee R \vee S)$

P

Inference by Resolution

• To determine if $KB \models \alpha$: • Check if (KB $\wedge \neg \alpha$) is a contradiction? • If so, then $KB \models \alpha$.

• Otherwise, no entailment.

Inference by Resolution

- To determine if $KB \models \alpha$:

 - produce a new clause.

 - Otherwise, if we can't add new clauses, no entailment.

• Convert (KB $\wedge \neg \alpha$) to Conjunctive Normal Form. Keep checking to see if we can use resolution to

• If ever we produce the empty clause (equivalent to False), we have a contradiction, and $\overline{\text{KB}} \models \alpha$.

$(A \lor B)$ $(\neg B \lor C)$ $(\neg C)$ $(\neg A)$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A)$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B)$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A)$

$(A \lor B)$ $(\neg B \lor C)$ $(\neg C)$ $(\neg A)$ $(\neg B)$ $(\neg B)$ (A)

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A)$

$(A \lor B) (\neg B \lor C) (\neg C) (\neg A) (\neg B) (A) ()$

$(A \lor B) \quad (\neg B \lor C) \quad (\neg C) \quad (\neg A) \quad (\neg B) \quad (A) \quad ()$

First-Order Logic

Propositional Logic

Propositional Symbols

MinervaGryffindor

MinervaHufflepuff

MinervaRavenclaw

MinervaSlytherin

 $\bullet \quad \bullet \quad \bullet$

First-Order Logic

Constant Symbol

Minerva Pomona Horace Gilderoy Gryffindor Hufflepuff Ravenclaw Slytherin

Predicate Symbol

Person House BelongsTo

First-Order Logic

Person(Minerva)

House(Gryffindor)

¬House(Minerva)

BelongsTo(Minerva, Gryffindor)

Minerva is a person. Gryffindor is a house. Minerva is not a house.

Minerva belongs to Gryffindor.

Universal Quantification

Universal Quantification

$\forall x. BelongsTo(x, Gryffindor) \rightarrow$ $\neg BelongsTo(x, Hufflepuff)$

For all objects x, if x belongs to Gryffindor, then x does not belong to Hufflepuff.

Anyone in Gryffindor is not in Hufflepuff.

Existential Quantification

Existential Quantification

$\exists x. House(x) \land BelongsTo(Minerva, x)$

There exists an object x such that x is a house and Minerva belongs to x.

Minerva belongs to a house.

Existential Quantification

$\forall x. Person(x) \rightarrow (\exists y. House(y) \land BelongsTo(x, y))$

For all objects x, if x is a person, then there exists an object y such that y is a house and x belongs to y.

Every person belongs to a house.

Knowledge

Introduction to Artificial Intelligence with Python