Introduction to
 Artificial Intelligence
 with Python

Knowledge

knowledge-based agents

agents that reason by operating on internal representations of knowledge

If it didn't rain, Harry visited Hagrid today.

Harry visited Hagrid or Dumbledore today, but not both.

Harry visited Dumbledore today.

Harry did not visit Hagrid today.

It rained today.

Logic

sentence

an assertion about the world in a knowledge representation language

Propositional Logic

Proposition Symbols

$P \quad Q \quad R$

Logical Connectives

\longrightarrow
not

implication
\wedge
and

biconditional

Not (\neg)

P	$\neg P$
false	true
true	false

P	Q	$P \wedge Q$
false	false	false
false	true	false
true	false	false
true	true	true

Or (v)

P	Q	$P \vee Q$
false	false	false
false	true	true
true	false	true
true	true	true

Implication $(\rightarrow$)

P	Q	$P \rightarrow Q$
false	false	true
false	true	true
true	false	false
true	true	true

Biconditional (\leftrightarrow)

P	Q	$P \leftrightarrow Q$
false	false	true
false	true	false
true	false	false
true	true	true

model

assignment of a truth value to every propositional symbol (a "possible world")

model

P : It is raining.
Q: It is a Tuesday.

$$
\{P=\text { true }, Q=\text { false }\}
$$

knowledge base

a set of sentences known by a knowledge-based agent

Entailment

$\alpha \vDash \beta$

In every model in which sentence α is true, sentence β is also true.

If it didn't rain, Harry visited Hagrid today.

Harry visited Hagrid or Dumbledore today, but not both.

Harry visited Dumbledore today.

Harry did not visit Hagrid today.

It rained today.

inference

the process of deriving new sentences from old ones
P : It is a Tuesday.
Q: It is raining.
R: Harry will go for a run.
KB: $\quad(P \wedge \neg Q) \rightarrow R \quad P$
$\neg Q$
Inference: R

Inference Algorithms

Does
 $\mathrm{KB} \vDash \alpha$?

Model Checking

Model Checking

- To determine if $\mathrm{KB} \vDash \alpha$:
- Enumerate all possible models.
- If in every model where KB is true, α is true, then KB entails α.
- Otherwise, KB does not entail α.
P : It is a Tuesday. $\quad Q$: It is raining. $\quad R$: Harry will go for a run.
$\mathrm{KB}: \quad(P \wedge \neg Q) \rightarrow R$
P
$\neg Q$

Query: R

P	Q	R	KB
false	false	false	
false	false	true	
false	true	false	
false	true	true	
true	false	false	
true	false	true	
true	true	false	
true	true	true	

P : It is a Tuesday. $\quad Q$: It is raining. $\quad R$: Harry will go for a run.
KB: $(P \wedge \neg Q) \rightarrow R$
P
$\neg Q$

Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

P : It is a Tuesday.
$Q:$ It is raining.
KB: $(P \wedge \neg Q) \rightarrow R$
P

R: Harry will go for a run.
Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

Knowledge Engineering

Clue

Clue

People

Col. Mustard

Prof. Plum

Ms. Scarlet

Rooms
Weapons
Knife

Revolver

Wrench

Clue

People

Weapons

Clue

People

Weapons

People

Rooms
Weapons

Rooms

Weapons

Clue

Propositional Symbols

mustard
plum
scarlet

ballroom
kitchen
library

knife revolver wrench

Clue

(mustard \vee plum \vee scarlet)
(ballroom v kitchen v library)
(knife \vee revolver v wrench)

\neg plum

\neg mustard $\vee \neg$ library $\vee \neg$ revolver

Logic Puzzles

- Gilderoy, Minerva, Pomona and Horace each belong to a different one of the four houses: Gryffindor, Hufflepuff, Ravenclaw, and Slytherin House.
- Gilderoy belongs to Gryffindor or Ravenclaw.
- Pomona does not belong in Slytherin.
- Minerva belongs to Gryffindor.

Logic Puzzles

Propositional Symbols

GilderoyGryffindor GilderoyHufflepuff
GilderoyRavenclaw GilderoySlytherin

PomonaGryffindor
PomonaHufflepuff PomonaRavenclaw PomonaSlytherin

MinervaGryffindor
MinervaHufflepuff
MinervaRavenclaw
MinervaSlytherin
HoraceGryffindor
HoraceHfufflepuff
HoraceRavenclaw
HoraceSlytherin

Logic Puzzles

(PomonaSlytherin $\rightarrow \neg$ PomonaHufflepuff)
(MinervaRavenclaw $\rightarrow \neg$ GilderoyRavenclaw)
(GilderoyGryffindor v GilderoyRavenclaw)

Mastermind

Inference Rules

Modus Ponens

If it is raining, then Harry is inside.

It is raining.

Harry is inside.

Modus Ponens

$$
\alpha \rightarrow \beta
$$

α
β

And Elimination

Harry is friends with Ron and Hermione.

Harry is friends with Hermione.

And Elimination

$$
\alpha \wedge \beta
$$

α

Double Negation Elimination

It is not true that Harry did not pass the test.

Harry passed the test.

Double Negation Elimination

$$
\neg(\neg \alpha)
$$

Implication Elimination

If it is raining, then Harry is inside.

It is not raining or Harry is inside.

Implication Elimination

$$
\alpha \rightarrow \beta
$$

$$
\neg \alpha \vee \beta
$$

Biconditional Elimination

It is raining if and only if Harry is inside.

If it is raining, then Harry is inside, and if Harry is inside, then it is raining.

Biconditional Elimination

$$
\alpha \leftrightarrow \beta
$$

$$
(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)
$$

De Morgan's Law

It is not true that both Harry and Ron passed the test.

Harry did not pass the test or Ron did not pass the test.

De Morgan's Law

$$
\neg(\alpha \wedge \beta)
$$

$$
\neg \alpha \vee \neg \beta
$$

De Morgan's Law

It is not true that
 Harry or Ron passed the test.

Harry did not pass the test and Ron did not pass the test.

De Morgan's Law

$$
\neg(\alpha \vee \beta)
$$

$$
\neg \alpha \wedge \neg \beta
$$

Distributive Property

$$
(\alpha \wedge(\beta \vee \gamma))
$$

$(\alpha \wedge \beta) \vee(\alpha \wedge \gamma)$

Distributive Property

$$
(\alpha \vee(\beta \wedge \gamma))
$$

$$
(\alpha \vee \beta) \wedge(\alpha \vee \gamma)
$$

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

Theorem Proving

- initial state: starting knowledge base
- actions: inference rules
- transition model: new knowledge base after inference
- goal test: check statement we're trying to prove
- path cost function: number of steps in proof

Resolution

(Ron is in the Great Hall) v (Hermione is in the library)

Ron is not in the Great Hall

Hermione is in the library

$$
\begin{gathered}
P \vee Q \\
\neg P
\end{gathered}
$$

Q

$$
\begin{gathered}
P \vee Q_{l} \vee Q_{2} \vee \ldots \vee Q_{n} \\
\neg P
\end{gathered}
$$

$$
Q_{1} \vee Q_{2} \vee \ldots \vee Q_{n}
$$

(Ron is in the Great Hall) v (Hermione is in the library)

(Ron is not in the Great Hall) v (Harry is sleeping)
(Hermione is in the library) \vee (Harry is sleeping)

$$
\begin{gathered}
P \vee Q \\
\neg P \vee R
\end{gathered}
$$

$Q \vee R$

$$
\begin{aligned}
& P \vee Q_{1} \vee Q_{2} \vee \ldots \vee Q_{n} \\
& \neg P \vee R_{1} \vee R_{2} \vee \ldots \vee R_{m}
\end{aligned}
$$

$Q_{1} \vee Q_{2} \vee \ldots \vee Q_{n} \vee R_{1} \vee R_{2} \vee \ldots \vee R_{m}$

clause

a disjunction of literals

$$
\text { e.g. } P \vee Q \vee R
$$

conjunctive normal form

logical sentence that is a conjunction of clauses
e.g. $(A \vee B \vee C) \wedge(D \vee \neg E) \wedge(F \vee G)$

Conversion to CNF

- Eliminate biconditionals
- turn $(\alpha \leftrightarrow \beta)$ into $(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$
- Eliminate implications
- turn $(\alpha \rightarrow \beta)$ into $\neg \alpha \vee \beta$
- Move \neg inwards using De Morgan's Laws
- e.g. turn $\neg(\alpha \wedge \beta)$ into $\neg \alpha \vee \neg \beta$
- Use distributive law to distribute v wherever possible

Conversion to CNF

$$
(P \vee Q) \rightarrow R
$$

$$
\neg(P \vee Q) \vee R
$$

eliminate implication

$$
(\neg P \wedge \neg Q) \vee R
$$

De Morgan's Law
$(\neg P \vee R) \wedge(\neg Q \vee R)$
distributive law

Inference by Resolution

$$
\begin{gathered}
P \vee Q \\
\neg P \vee R
\end{gathered}
$$

$(Q \vee R)$

$$
\begin{aligned}
& P \vee Q \vee S \\
& \neg P \vee R \vee S
\end{aligned}
$$

$(Q \vee S \vee R \vee S)$

$$
\begin{gathered}
P \vee Q \vee S \\
\neg P \vee R \vee S
\end{gathered}
$$

$(Q \vee R \vee S)$

$$
\begin{gathered}
P \\
\neg P
\end{gathered}
$$

()

Inference by Resolution

- To determine if $\mathrm{KB} \vDash \alpha$:
- Check if $(\mathrm{KB} \wedge \neg \alpha)$ is a contradiction?
- If so, then $\mathrm{KB} \vDash \alpha$.
- Otherwise, no entailment.

Inference by Resolution

- To determine if $\mathrm{KB} \vDash \alpha$:
- Convert $(\mathrm{KB} \wedge \neg \alpha)$ to Conjunctive Normal Form.
- Keep checking to see if we can use resolution to produce a new clause.
- If ever we produce the empty clause (equivalent to False), we have a contradiction, and $\mathrm{KB} \vDash \alpha$.
- Otherwise, if we can't add new clauses, no entailment.

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad \underline{(\neg B \vee C)} \quad(\neg C) \quad(\neg A)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$$
(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B)
$$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B)(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$$
(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B) \quad(A)
$$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B) \quad(A)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B) \quad(A)$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B) \quad(A) \quad()$

Inference by Resolution

Does $(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C)$ entail A ?

$$
(A \vee B) \wedge(\neg B \vee C) \wedge(\neg C) \wedge(\neg A)
$$

$(A \vee B) \quad(\neg B \vee C) \quad(\neg C) \quad(\neg A) \quad(\neg B) \quad(A) \quad()$

First-Order Logic

Propositional Logic

Propositional Symbols
MinervaGryffindor
MinervaHufflepuff
MinervaRavenclaw
MinervaSlytherin

First-Order Logic

Constant Symbol

Minerva
Pomona
Horace
Gilderoy
Gryffindor
Hufflepuff
Ravenclaw
Slytherin

Predicate Symbol

Person
House
BelongsTo

First-Order Logic

Person(Minerva)
Minerva is a person.
House(Gryffindor)
Gryffindor is a house.
\neg House(Minerva)
Minerva is not a house.
BelongsTo(Minerva, Gryffindor)
Minerva belongs to Gryffindor.

Universal Quantification

Universal Quantification

$\forall x$. BelongsTo(x, Gryffindor) \rightarrow
\neg BelongsTo(x, Hufflepuff)
For all objects \times, if \times belongs to Gryffindor, then x does not belong to Hufflepuff.

Anyone in Gryffindor is not in Hufflepuff.

Existential Quantification

Existential Quantification

$\exists x . \operatorname{House}(x) \wedge$ BelongsTo(Minerva, x)

There exists an object \times such that x is a house and Minerva belongs to x.

Minerva belongs to a house.

Existential Quantification

$$
\forall x . \operatorname{Person}(x) \rightarrow(\exists y . \operatorname{House}(y) \wedge \operatorname{BelongsTo}(x, y))
$$

For all objects x, if x is a person, then there exists an object y such that y is a house and x belongs to y.

Every person belongs to a house.

Knowledge

Introduction to
 Artificial Intelligence
 with Python

