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Uncertainty









Probability



P(ω)

Possible Worlds



P(ω)



0 ≤ P(ω) ≤ 1



0 ≤ P(ω) = 1∑
ω∈Ω
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P(sum to 7) =

P(sum to 12) =
1
36
6
36

=
1
6



unconditional probability

degree of belief in a proposition 
in the absence of any other evidence



conditional probability

degree of belief in a proposition 
given some evidence that has already 
been revealed



conditional probability

P(a | b)



P(rain today | rain yesterday)



P(route change | traffic conditions)



P(disease | test results)



P(a |b) =
P(a ∧ b)

P(b)



P(sum 12 |    )





=
1
6

P(    )



=
1
6

P(    )

=
1
36

P(sum 12)

=
1
6

P(sum 12 |    )



P(a |b) =
P(a ∧ b)

P(b)

P(a ∧ b) = P(b)P(a |b)

P(a ∧ b) = P(a)P(b |a)



random variable

a variable in probability theory with a 
domain of possible values it can take on



random variable

Roll 

{1, 2, 3, 4, 5, 6}



random variable

Weather 

{sun, cloud, rain, wind, snow}



random variable

Traffic 

{none, light, heavy}



random variable

Flight 

{on time, delayed, cancelled}



probability distribution

P(Flight = on time) = 0.6 
P(Flight = delayed) = 0.3 
P(Flight = cancelled) = 0.1



probability distribution

P(Flight) = ⟨0.6, 0.3, 0.1⟩



independence

the knowledge that one event occurs does 
not affect the probability of the other event



independence

P(a ∧ b) = P(a)P(b |a)



independence

P(a ∧ b) = P(a)P(b)



independence

P(        ) = P(    )P(    )

=
1
6

⋅
1
6

=
1
36



independence

P(        ) ≠ P(    )P(    )

=
1
6

⋅
1
6

=
1
36



independence

P(        ) ≠ P(    )P(     |    )

=
1
6

⋅ 0 = 0



Bayes' Rule



P(a ∧ b) = P(b) P(a |b)

P(a ∧ b) = P(a) P(b |a)



= P(b) P(a |b)P(a) P(b |a)



= P(b) P(a |b)
P(a)

P(b |a)

Bayes' Rule



= P(b)P(a |b)
P(a)

P(b |a)

Bayes' Rule



PMAM

Given clouds in the morning, 
what's the probability of rain in the afternoon?

• 80% of rainy afternoons start with cloudy 
  mornings. 
• 40% of days have cloudy mornings. 
• 10% of days have rainy afternoons.



P(rain |clouds) =
P(clouds |rain)P(rain)

P(clouds)

=
(.8)(.1)

.4

= 0.2



P(cloudy morning | rainy afternoon)

Knowing

we can calculate

P(rainy afternoon | cloudy morning)



P(visible effect | unknown cause)

Knowing

we can calculate

P(unknown cause | visible effect)



P(medical test result | disease)

Knowing

we can calculate

P(disease | medical test result)



P(blurry text | counterfeit bill)

Knowing

we can calculate

P(counterfeit bill | blurry text)



Joint Probability



C = cloud C = ¬cloud

0.4 0.6

AM

R = rain R = ¬rain
C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58

PM

R = rain R = ¬rain

0.1 0.9

AM
PM



P(C | rain)

R = rain R = ¬rain
C = cloud 0.08 0.32

C = ¬cloud 0.02 0.58

P(C | rain) = 
P(C, rain)

P(rain)
= αP(C, rain)

= α⟨0.08, 0.02⟩ = ⟨0.8, 0.2⟩ 



Probability Rules



P(¬a) = 1 − P(a)

Negation



P(a ∨ b) = P(a) + P(b) − P(a ∧ b)

Inclusion-Exclusion



P(a) = P(a, b) + P(a, ¬b)

Marginalization



P(X = xi) = ∑
j

P(X = xi, Y = yj)

Marginalization



Marginalization
R = rain R = ¬rain

C = cloud 0.08 0.32
C = ¬cloud 0.02 0.58

P(C = cloud)
= P(C = cloud, R = rain) + P(C = cloud, R = ¬rain)
= 0.08 + 0.32
= 0.40



P(a) = P(a |b)P(b) + P(a |¬b)P(¬b)

Conditioning



P(X = xi) = ∑
j

P(X = xi |Y = yj)P(Y = yj)

Conditioning



Bayesian Networks



Bayesian network

data structure that represents the 
dependencies among random variables



Bayesian network

• directed graph 
• each node represents a random variable 
• arrow from X to Y means X is a parent of Y 
• each node X has probability distribution 

P(X | Parents(X))



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}



Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1



Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8
heavy 0.1 0.9



Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

T attend miss

on time 0.9 0.1
delayed 0.6 0.4



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

P(light)

P(light)

Computing Joint Probabilities



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

P(light, no)

P(light) P(no | light)

Computing Joint Probabilities



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

P(light, no, delayed)

P(light) P(no | light) P(delayed | light, no)

Computing Joint Probabilities



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

P(light, no, delayed, miss)

P(light) P(no | light) P(delayed | light, no) P(miss | delayed)

Computing Joint Probabilities



Inference



Inference

• Query X: variable for which to compute distribution 

• Evidence variables E: observed variables for event e 

• Hidden variables Y: non-evidence, non-query variable. 

• Goal: Calculate P(X | e)



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

P(Appointment | light, no)

 = α P(Appointment, light, no)

 = α [P(Appointment, light, no, on time) 
    + P(Appointment, light, no, delayed)]



∑

Inference by Enumeration

P(X | e) = α P(X, e) = α  
y

 P(X, e, y)

X is the query variable. 
e is the evidence. 
y ranges over values of hidden variables. 
α normalizes the result.



Approximate Inference



Sampling



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}



Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

R = none



Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8
heavy 0.1 0.9

R = none
M = yes



Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

R = none
M = yes

T = on time



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

T attend miss

on time 0.9 0.1
delayed 0.6 0.4

R = none
M = yes

T = on time
A = attend



R = none
M = yes

T = on time
A = attend



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



P(Train = on time) ?



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



P(Rain = light | Train = on time) ?



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



R = none
M = yes

T = on time
A = attend

R = none
M = no

T = on time
A = attend

R = light
M = yes

T = delayed
A = attend

R = light
M = no

T = on time
A = miss

R = none
M = yes

T = on time
A = attend

R = none
M = yes

T = on time
A = attend

R = heavy
M = no

T = delayed
A = miss

R = light
M = no

T = on time
A = attend



Rejection Sampling



Likelihood Weighting



Likelihood Weighting

• Start by fixing the values for evidence variables. 

• Sample the non-evidence variables using conditional 
probabilities in the Bayesian Network. 

• Weight each sample by its likelihood: the probability 
of all of the evidence.



P(Rain = light | Train = on time) ?



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}



Rain 
{none, light, heavy}

none light heavy

0.7 0.2 0.1

T = on time

R = light



Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R yes no
none 0.4 0.6
light 0.2 0.8
heavy 0.1 0.9

T = on time

R = lightR = light
M = yes



Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes



Appointment 
{attend, miss}

Train 
{on time, delayed}

Maintenance 
{yes, no}

T attend miss

on time 0.9 0.1
delayed 0.6 0.4

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Train 
{on time, delayed}

Maintenance 
{yes, no}

Rain 
{none, light, heavy}

R M on time delayed
none yes 0.8 0.2
none no 0.9 0.1
light yes 0.6 0.4
light no 0.7 0.3
heavy yes 0.4 0.6
heavy no 0.5 0.5

T = on time

R = lightR = light
M = yes
R = light
M = yes

A = attend



Uncertainty over Time



Xt: Weather at time t



Markov assumption

the assumption that the current state 
depends on only a finite fixed number of 
previous states



Markov Chain



Markov chain

a sequence of random variables where the 
distribution of each variable follows the 
Markov assumption



0.8 0.2

0.3 0.7
Today (Xt)

Tomorrow (Xt+1)

Transition Model



X0 X1 X2 X3 X4



Sensor Models



Hidden State Observation

robot's position robot's sensor data

words spoken audio waveforms

user engagement website or app analytics

weather umbrella



Hidden Markov Models



Hidden Markov Model

a Markov model for a system with hidden 
states that generate some observed event



0.2 0.8

0.9 0.1
State (Xt)

Observation (Et)

Sensor Model



sensor Markov assumption

the assumption that the evidence variable 
depends only the corresponding state



X0 X1 X2 X3 X4

E0 E1 E2 E3 E4



Task Definition

filtering
given observations from start until now, 
calculate distribution for current state

prediction
given observations from start until now, 
calculate distribution for a future state

smoothing
given observations from start until now, 

calculate distribution for past state

most likely 
explanation

given observations from start until now, 
calculate most likely sequence of states



Uncertainty
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