Introduction to
 Artificial Intelligence
 with Python

Uncertainty

NEXT 36 HOURS

HOURLY $\rightarrow \mid 10$ DAYS \rightarrow

Probability

Possible Worlds

ω

$$
P(\omega)
$$

$$
0 \leq P(\omega) \leq 1
$$

$$
\sum_{\omega \in \Omega} P(\omega)=1
$$

$$
P(\bullet)=\frac{1}{6}
$$

\bullet	. \cdot	\odot	: P $^{\text {c }}$	\because	:
$\cdot \cdot$. 9.	$\bullet \cdot$	Q8.	\because	¢\%.
$\cdot \cdot$. \because	$\stackrel{\circ}{\cdot} \cdot$:8.0	$\because \cdot$	¢ \% 0°
$\cdot{ }^{\circ} \mathrm{P}$. $1: 8$	- \cdot :	:3:2	$\because \cdot$	
\bigcirc	. $0 \because$:3\%	\because	: $0:$
-	. \square^{8}	- \cdot ¢	:0¢	\because	\%

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

$$
\begin{aligned}
& P(\text { sum to } 12)=\frac{1}{36} \\
& P(\text { sum to } 7)=\frac{6}{36}=\frac{1}{6}
\end{aligned}
$$

unconditional probability

degree of belief in a proposition in the absence of any other evidence

conditional probability

degree of belief in a proposition given some evidence that has already been revealed

conditional probability

$P(a \mid b)$

$P($ rain today \mid rain yesterday)

P (route change | traffic conditions)

P (disease | test results)

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

$P($ sum $12 \mid E$ ® $)$

\bullet	. \cdot	\odot	: P $^{\text {c }}$	\because	:
$\cdot \cdot$. 9.	$\bullet \cdot$	Q8.	\because	¢\%.
$\cdot \cdot$. \because	$\stackrel{\circ}{\cdot} \cdot$:8.0	$\because \cdot$	¢ \% 0°
$\cdot{ }^{\circ} \mathrm{P}$. $1: 8$	- \cdot :	:3:2	$\because \cdot$	
\bigcirc	. $0 \because$:3\%	\because	: $0:$
-	. \square^{8}	- \cdot ¢	:0¢	\because	\%

$P(a \mid b)=\frac{P(a \wedge b)}{P(b)}$

$$
\begin{aligned}
& P(a \wedge b)=P(b) P(a \mid b) \\
& P(a \wedge b)=P(a) P(b \mid a)
\end{aligned}
$$

random variable

a variable in probability theory with a domain of possible values it can take on

random variable

Roll

$$
\{1,2,3,4,5,6\}
$$

random variable

Weather
\{sun, cloud, rain, wind, snow\}

random variable

Traffic
\{none, light, heavy\}

random variable

Flight
\{on time, delayed, cancelled\}
probability distribution
$\mathrm{P}($ Flight $=$ on time $)=0.6$
$\mathrm{P}($ Flight $=$ delayed $)=0.3$
$\mathrm{P}($ Flight $=$ cancelled $)=0.1$

probability distribution

$\mathbf{P}($ Flight $)=\langle 0.6,0.3,0.1\rangle$

independence

the knowledge that one event occurs does not affect the probability of the other event

independence

$P(a \wedge b)=P(a) P(b \mid a)$

independence

$P(a \wedge b)=P(a) P(b)$

independence

$$
\begin{aligned}
& =\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
\end{aligned}
$$

independence

$$
\begin{aligned}
P(\Xi: B) & \neq P(\text { (: }) P(: Z) \\
& =\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
\end{aligned}
$$

independence

$$
\begin{aligned}
& =\frac{1}{6} \cdot 0=0
\end{aligned}
$$

Bayes' Rule

$$
P(a \wedge b)=P(b) P(a \mid b)
$$

$$
P(a \wedge b)=P(a) P(b \mid a)
$$

$$
P(a) P(b \mid a)=P(b) P(a \mid b)
$$

Bayes' Rule

$$
P(b \mid a)=\frac{P(b) P(a \mid b)}{P(a)}
$$

Bayes' Rule

$$
P(b \mid a)=\frac{P(a \mid b) P(b)}{P(a)}
$$

PM

0,0

Given clouds in the morning, what's the probability of rain in the afternoon?

- 80% of rainy afternoons start with cloudy mornings.
- 40% of days have cloudy mornings.
- 10\% of days have rainy afternoons.

$P($ rain \mid clouds $)=\frac{P(\text { clouds } \mid \text { rain }) P(\text { rain })}{P(\text { clouds })}$

$$
=\frac{(.8)(.1)}{.4}
$$

$$
=0.2
$$

Knowing

P(cloudy morning | rainy afternoon)

we can calculate

P(rainy afternoon | cloudy morning)

Knowing

P (visible effect \mid unknown cause)

we can calculate
P(unknown cause | visible effect)

Knowing
$P($ medical test result \mid disease)
we can calculate
$P($ disease | medical test result $)$

Knowing

$P($ blurry text | counterfeit bill)

we can calculate
P(counterfeit bill | blurry text)

Joint Probability

$\mathrm{C}=$ cloud	$\mathrm{C}=\neg$ cloud
0.4	0.6

$\mathrm{R}=$ rain	$\mathrm{R}=\neg$ rain
0.1	0.9

	$\mathrm{R}=$ rain	$\mathrm{R}=\neg$ rain
$\mathrm{C}=$ cloud	0.08	0.32
$\mathrm{C}=\neg$ cloud	0.02	0.58

$\mathbf{P}(\mathrm{C} \mid$ rain $)$

$$
\begin{aligned}
P(C \mid \text { rain }) & =\frac{P(C, \text { rain })}{P(\text { rain })}=\alpha \mathbf{P}(C, \text { rain }) \\
& =\alpha\langle 0.08,0.02\rangle=\langle 0.8,0.2\rangle
\end{aligned}
$$

	$\mathrm{R}=$ rain	$\mathrm{R}=\neg$ rain
$\mathrm{C}=$ cloud	0.08	0.32
$\mathrm{C}=-$ cloud	0.02	0.58

Probability Rules

Negation

$$
P(\neg a)=1-P(a)
$$

Inclusion-Exclusion

$$
P(a \vee b)=P(a)+P(b)-P(a \wedge b)
$$

Marginalization

$$
P(a)=P(a, b)+P(a, \neg b)
$$

Marginalization

$$
P\left(X=x_{i}\right)=\sum P\left(X=x_{i}, Y=y_{j}\right)
$$

Marginalization

	$\mathrm{R}=$ rain	$\mathrm{R}=\neg$ rain
$\mathrm{C}=$ cloud	0.08	0.32
$\mathrm{C}=-$ cloud	0.02	0.58

$$
\begin{aligned}
& P(\mathrm{C}=\text { cloud }) \\
& =P(\mathrm{C}=\text { cloud, } R=\text { rain })+P(\mathrm{C}=\text { cloud, } R=\neg \text { rain }) \\
& =0.08+0.32 \\
& =0.40
\end{aligned}
$$

Conditioning

$$
P(a)=P(a \mid b) P(b)+P(a \mid \neg b) P(\neg b)
$$

Conditioning

$$
P\left(X=x_{i}\right)=\sum_{j} P\left(X=x_{i} \mid Y=y_{j}\right) P\left(Y=y_{j}\right)
$$

Bayesian Networks

Bayesian network

 data structure that represents the dependencies among random variables
Bayesian network

- directed graph
- each node represents a random variable
- arrow from X to Y means X is a parent of Y
- each node X has probability distribution P($X \mid$ Parents (X))

Maintenance \{yes, no\}

Computing Joint Probabilities

Computing Joint Probabilities

P(light, no)
$P($ light $) P(n o \mid$ light $)$

Computing Joint Probabilities

P(light, no, delayed)

P(light) P(no|light) P(delayed | light, no)

Computing Joint Probabilities

P(light, no, delayed, miss)

$P($ light $) P(n o \mid$ light $) P($ delayed \mid light, no) $P($ miss \mid delayed $)$

Inference

Inference

- Query X: variable for which to compute distribution
- Evidence variables E: observed variables for event e
- Hidden variables Y: non-evidence, non-query variable.
- Goal: Calculate P(X | e)

P(Appointment | light, no)

$=\alpha \mathrm{P}($ Appointment, light, no $)$
$=\alpha[\mathrm{P}($ Appointment, light, no, on time $)$ $+\mathrm{P}($ Appointment, light, no, delayed $)]$

Inference by Enumeration

$\mathbf{P}(\mathrm{X} \mid \mathbf{e})=\alpha \mathbf{P}(\mathrm{X}, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(\mathrm{X}, \mathbf{e}, \mathbf{y})$

X is the query variable.
\mathbf{e} is the evidence.
y ranges over values of hidden variables.
α normalizes the result.

Approximate Inference

Sampling


```
R = none
```

Rain	none	light	heavy
\{none, light, heavy\}	0.7	0.2	0.1

$\mathrm{R}=$ none
 $\mathrm{M}=$ yes

Maintenance \{yes, no\}

$$
\begin{aligned}
& \mathrm{R}=\text { none } \\
& \mathrm{M}=\text { yes }
\end{aligned}
$$

$$
\mathrm{T}=\text { on time }
$$

$$
\mathrm{A}=\text { attend }
$$

Appointment
\{attend, miss\}

\boldsymbol{T}	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

$$
\begin{gathered}
\mathrm{R}=\text { none } \\
\mathrm{M}=\text { yes } \\
\mathrm{T}=\text { on time } \\
\mathrm{A}=\text { attend }
\end{gathered}
$$

$\mathrm{R}=$ light
$\mathrm{M}=$ no
$\mathrm{T}=$ on time

$\mathrm{A}=$ miss

$\mathrm{R}=$ light
$\mathrm{M}=$ yes
$\mathrm{T}=$ delayed
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none	$\mathrm{R}=$ none
$\mathrm{M}=$ yes	$\mathrm{M}=$ yes
$\mathrm{T}=$ on time	$\mathrm{T}=$ on time
$\mathrm{A}=$ attend	$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ heavy
$\mathrm{M}=$ no
$\mathrm{T}=$ delayed
$\mathrm{A}=$ miss

$$
\begin{gathered}
\mathrm{R}=\text { light } \\
\mathrm{M}=n o
\end{gathered}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend
$\mathrm{P}($ Train $=$ on time $)$?

$\mathrm{R}=$ light
$\mathrm{M}=$ no
$\mathrm{T}=$ on time

$\mathrm{A}=$ miss

$\mathrm{R}=$ light
$\mathrm{M}=$ yes
$\mathrm{T}=$ delayed
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none	$\mathrm{R}=$ none
$\mathrm{M}=$ yes	$\mathrm{M}=$ yes
$\mathrm{T}=$ on time	$\mathrm{T}=$ on time
$\mathrm{A}=$ attend	$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ heavy
$\mathrm{M}=$ no
$\mathrm{T}=$ delayed
$\mathrm{A}=$ miss

$$
\begin{gathered}
\mathrm{R}=\text { light } \\
\mathrm{M}=n o
\end{gathered}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend
$\mathrm{R}=$ light
M = no
$\mathrm{T}=$ on time
$\mathrm{A}=$ miss
$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{gathered}
\mathrm{R}=\text { light } \\
\mathrm{M}=\text { yes } \\
\mathrm{T}=\text { delayed }
\end{gathered}
$$

$\mathrm{A}=$ attend
$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
A = attend
$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{gathered}
\mathrm{R}=\text { heavy } \\
\mathrm{M}=\text { no }
\end{gathered}
$$

$\mathrm{T}=$ delayed
$\mathrm{A}=$ miss
$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend
$\mathrm{R}=\operatorname{light}$
M = no
$\mathrm{T}=$ on time
A = attend
$\mathrm{P}($ Rain $=$ light \mid Train $=$ on time $) ?$

$\mathrm{R}=$ light
$\mathrm{M}=$ no
$\mathrm{T}=$ on time

$\mathrm{A}=$ miss

$\mathrm{R}=$ light
$\mathrm{M}=$ yes
$\mathrm{T}=$ delayed
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none	$\mathrm{R}=$ none
$\mathrm{M}=$ yes	$\mathrm{M}=$ yes
$\mathrm{T}=$ on time	$\mathrm{T}=$ on time
$\mathrm{A}=$ attend	$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ heavy
$\mathrm{M}=$ no
$\mathrm{T}=$ delayed
$\mathrm{A}=$ miss

$$
\begin{gathered}
\mathrm{R}=\text { light } \\
\mathrm{M}=n o
\end{gathered}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ light
$\mathrm{M}=$ no
$\mathrm{T}=$ on time

$\mathrm{A}=$ miss

$\mathrm{R}=$ light
$\mathrm{M}=$ yes
$\mathrm{T}=$ delayed
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none	$\mathrm{R}=$ none
$\mathrm{M}=$ yes	$\mathrm{M}=$ yes
$\mathrm{T}=$ on time	$\mathrm{T}=$ on time
$\mathrm{A}=$ attend	$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ heavy
$\mathrm{M}=$ no
$\mathrm{T}=$ delayed
$\mathrm{A}=$ miss

$$
\begin{gathered}
\mathrm{R}=\text { light } \\
\mathrm{M}=n o
\end{gathered}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{array}{|c|c|}
\hline \mathrm{R}=\text { light } & \mathrm{R}=\text { light } \\
\hline \mathrm{M}=\text { no } & \mathrm{M}=\text { yes } \\
\hline \mathrm{T}=\text { on time } & \mathrm{T}=\text { delayed } \\
\hline \mathrm{A}=\text { miss } & \mathrm{A}=\text { attend } \\
\hline
\end{array}
$$

$\mathrm{R}=$ none
$\mathrm{M}=$ no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{aligned}
& \mathrm{R}=\text { none } \\
& \mathrm{M}=\text { yes }
\end{aligned}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$\mathrm{R}=$ none
$\mathrm{M}=$ yes
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{aligned}
& \mathrm{R}=\text { none } \\
& \mathrm{M}=\text { yes }
\end{aligned}
$$

$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

$$
\begin{gathered}
\mathrm{R}=\text { heavy } \\
\mathrm{M}=\text { no }
\end{gathered}
$$

$\mathrm{T}=$ delayed
$\mathrm{A}=m i s s$
$\mathrm{R}=\operatorname{ligh} t$
M = no
$\mathrm{T}=$ on time
$\mathrm{A}=$ attend

Rejection Sampling

Likelihood Weighting

Likelihood Weighting

- Start by fixing the values for evidence variables.
- Sample the non-evidence variables using conditional probabilities in the Bayesian Network.
- Weight each sample by its Iikelihood: the probability of all of the evidence.
$\mathrm{P}($ Rain $=$ light \mid Train $=$ on time $) ?$

$\mathrm{R}=$ light

$$
\mathrm{T}=\text { on time }
$$

Rain			
\{none, light, heavy\}			
	none	light	heavy
0.7	0.2	0.1	

$$
\begin{aligned}
& \mathrm{R}=\text { light } t \\
& \mathrm{M}=\text { yes }
\end{aligned}
$$

$$
\mathrm{T}=\text { on time }
$$

Maintenance

 \{yes, no\}| \boldsymbol{R} | yes | no |
| :---: | :---: | :---: |
| none | 0.4 | 0.6 |
| light | 0.2 | 0.8 |
| heavy | 0.1 | 0.9 |

Maintenance \{yes, no\}

$$
\begin{aligned}
& \mathrm{R}=\text { light } t \\
& \mathrm{M}=y e s
\end{aligned}
$$

$$
\mathrm{T}=\text { on time }
$$

$$
\mathrm{A}=\text { attend }
$$

Appointment
\{attend, miss\}

\boldsymbol{T}	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

Uncertainty over Time

X_{t} : Weather at time t

Markov assumption

the assumption that the current state depends on only a finite fixed number of previous states

Markov Chain

Markov chain

a sequence of random variables where the distribution of each variable follows the Markov assumption

Transition Model

Sensor Models

Hidden State	Observation
robot's position	robot's sensor data
words spoken	audio waveforms
user engagement	website or app analytics
weather	umbrella

Hidden Markov Models

Hidden Markov Model

a Markov model for a system with hidden states that generate some observed event

Sensor Model

Observation (E_{t})

sensor Markov assumption

the assumption that the evidence variable depends only the corresponding state

Task	Definition
filtering	given observations from start until now, calculate distribution for current state
prediction	given observations from start until now, calculate distribution for a future state
smoothing	given observations from start until now, calculate distribution for past state
most likely explanation	given observations from start until now, calculate most likely sequence of states

Uncertainty

Introduction to
 Artificial Intelligence
 with Python

