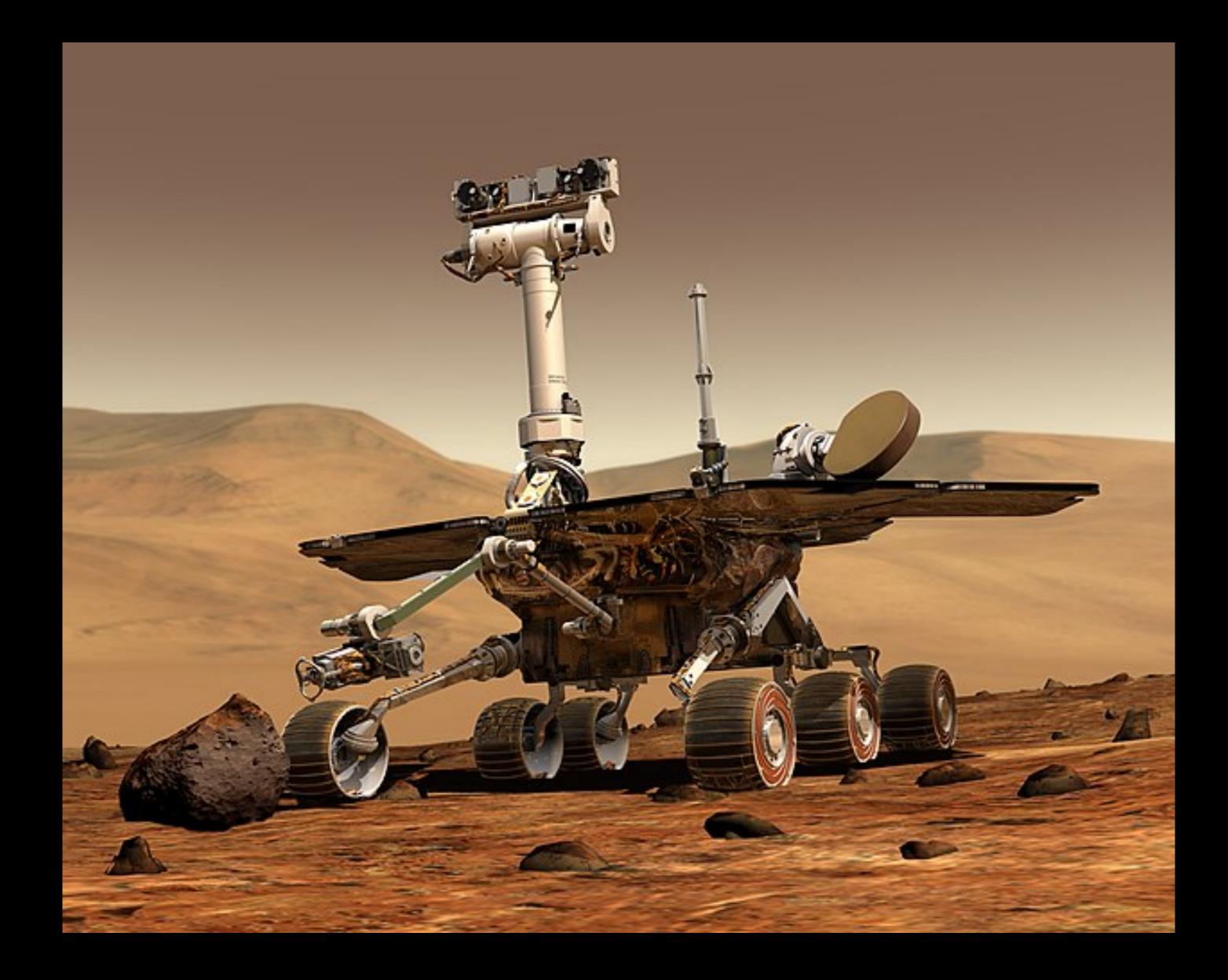
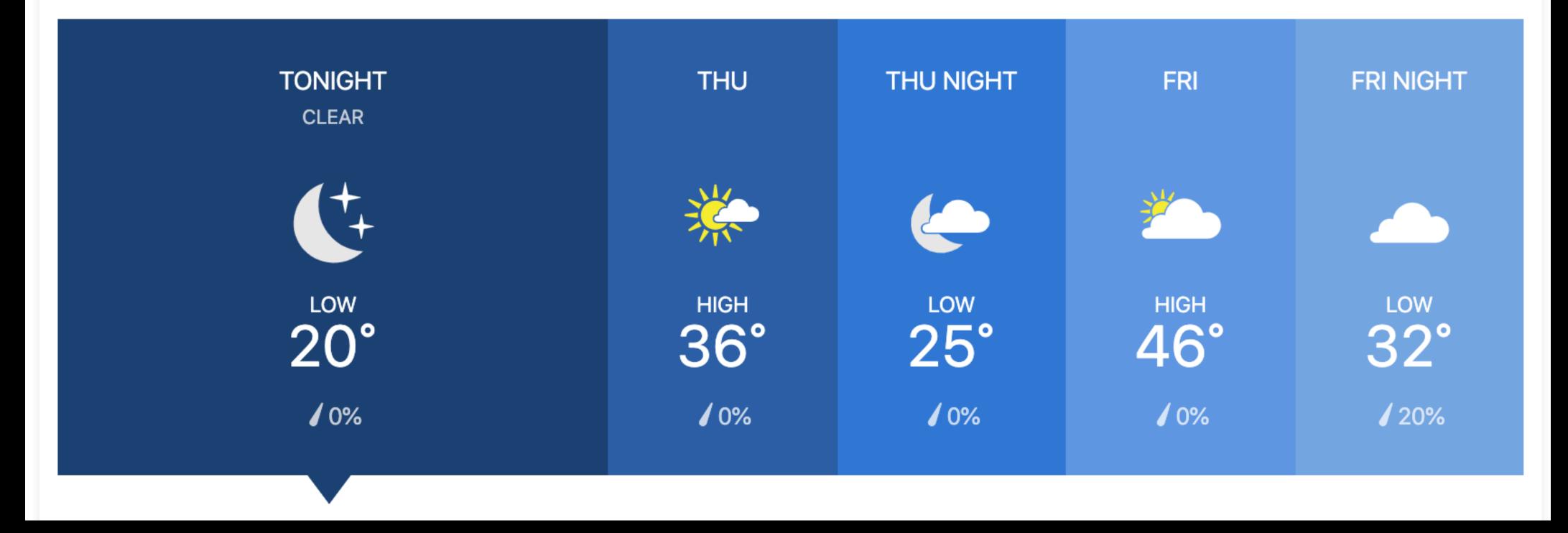
Introduction to Artificial Intelligence with Python

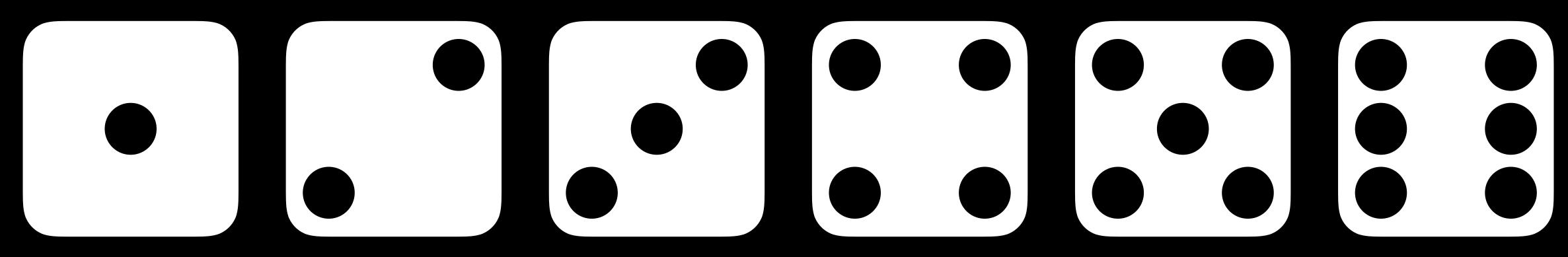
Uncertainty



NEXT 36 HOURS

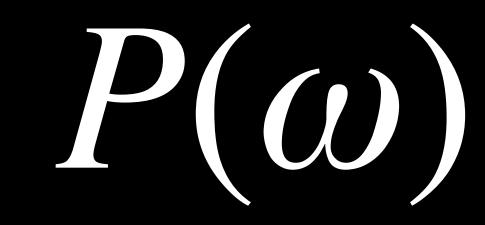


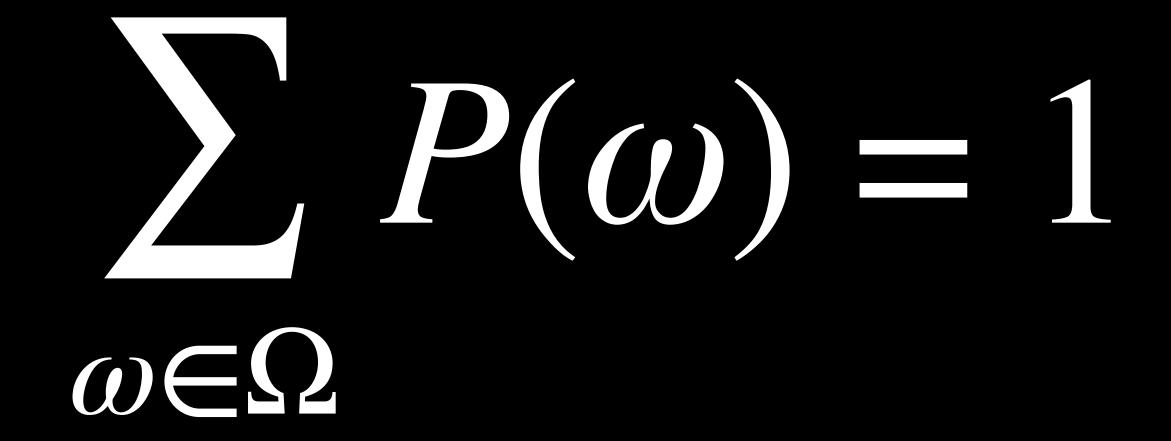
HOURLY \rightarrow 10 DAYS \rightarrow

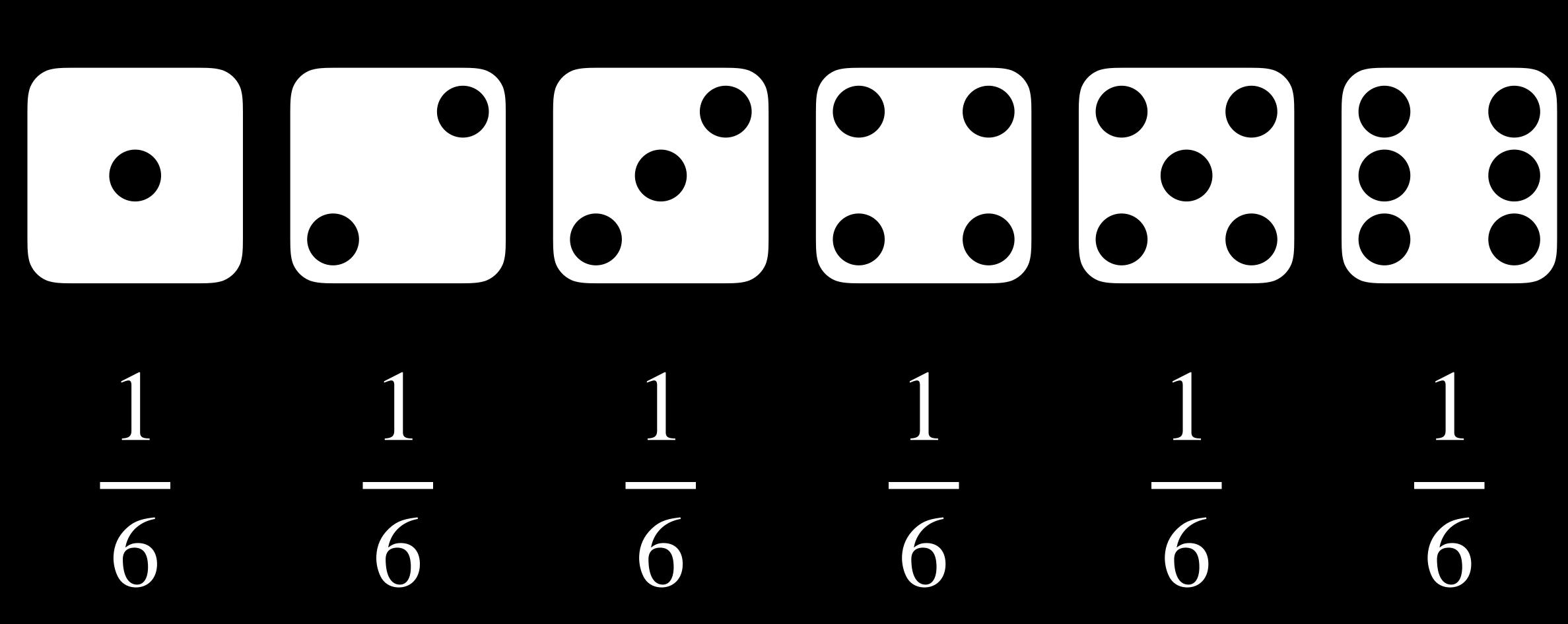


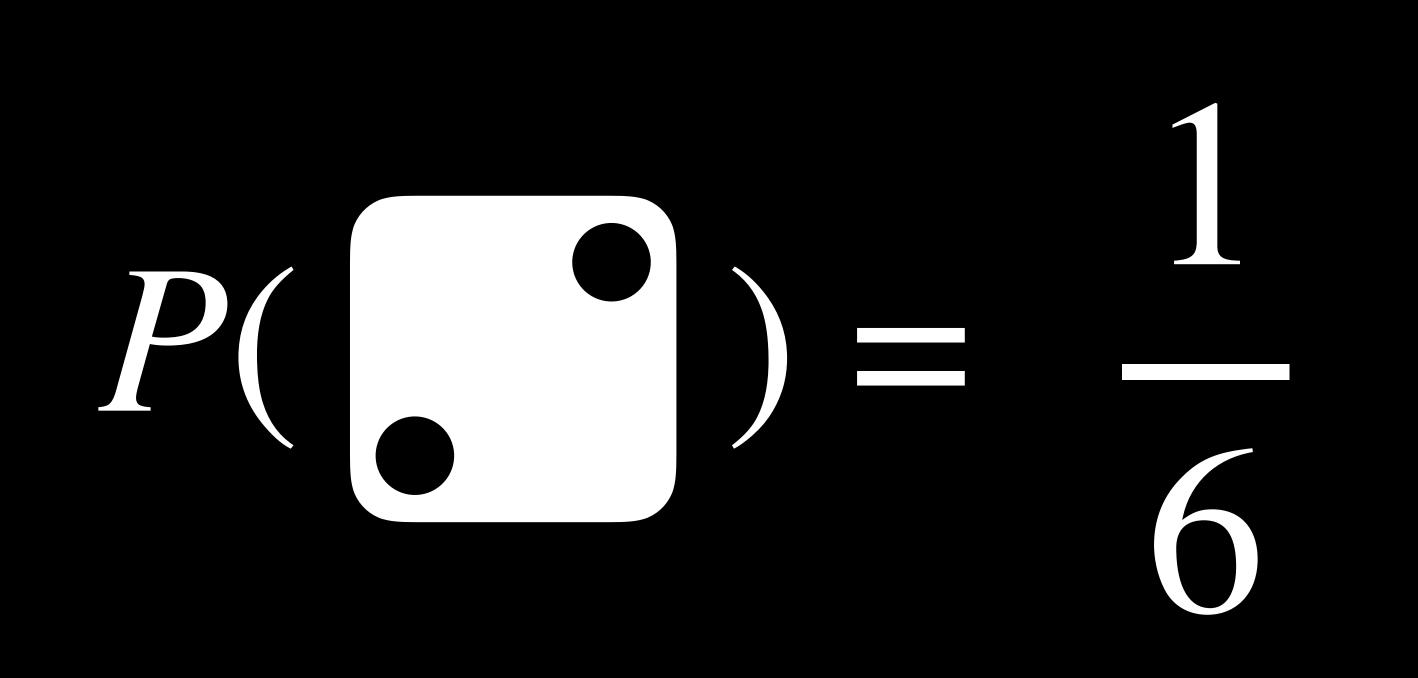
Probability

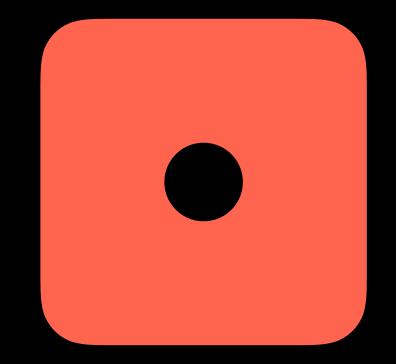
Possible Worlds

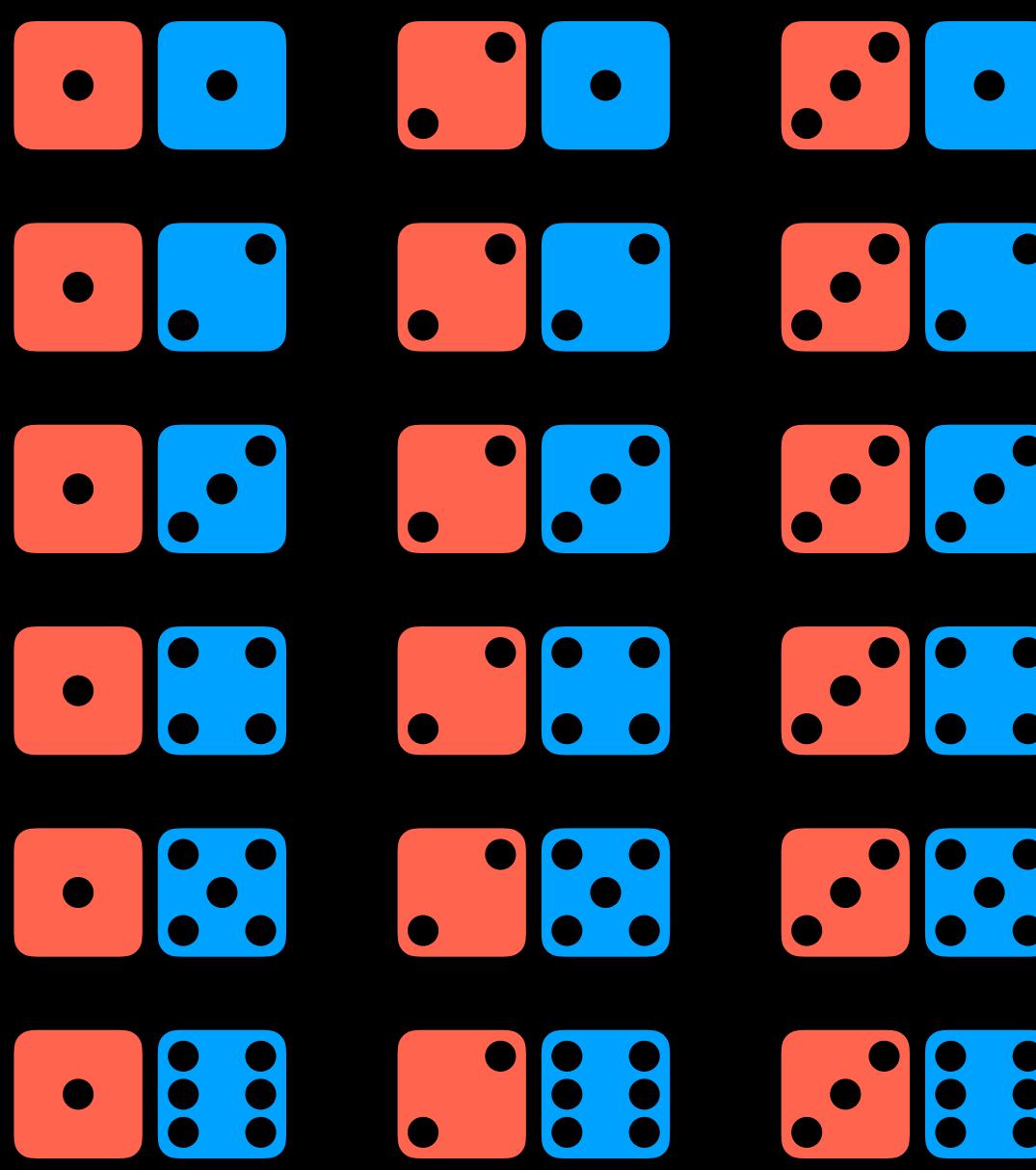


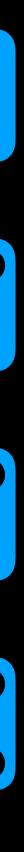






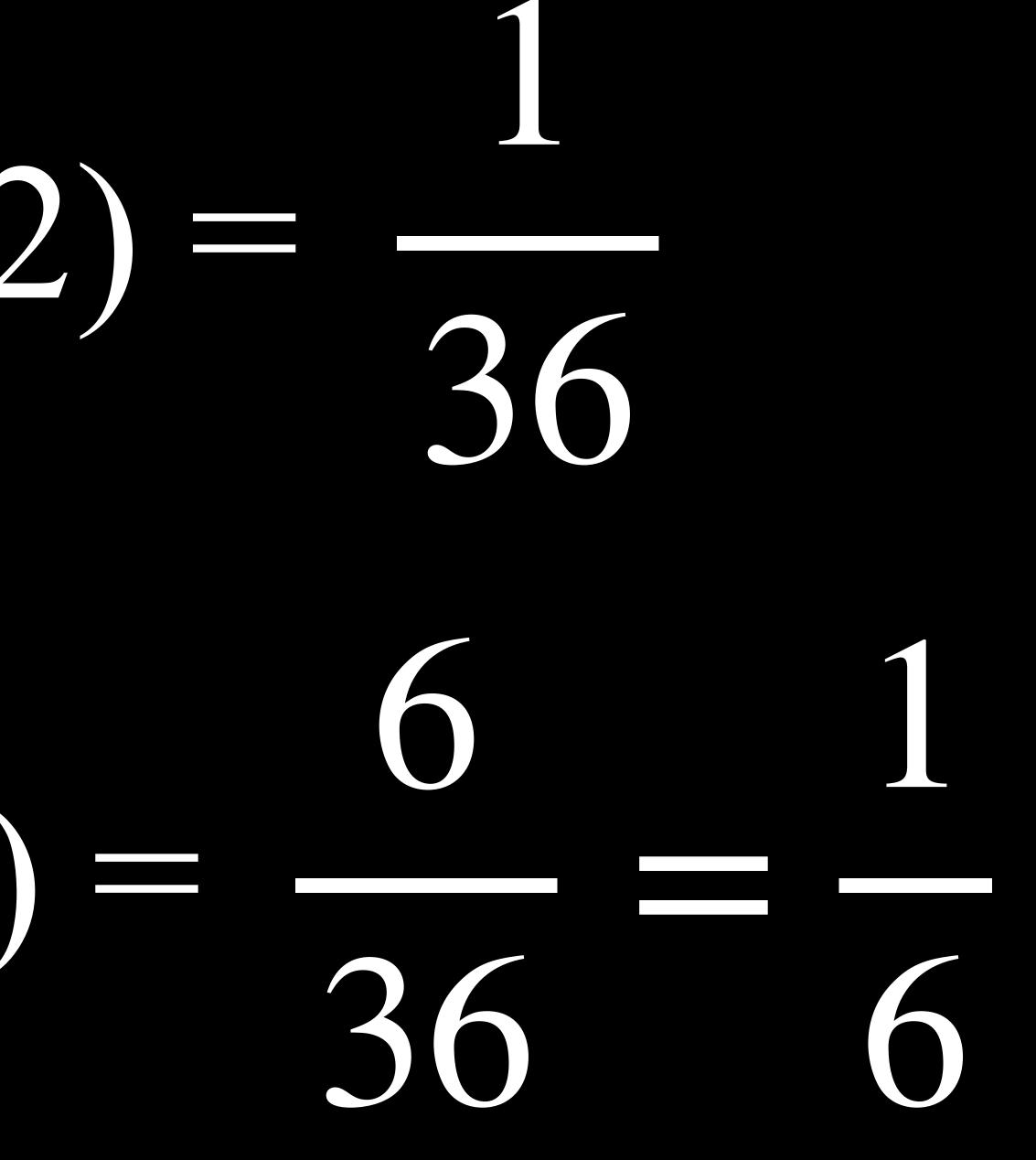






P(sum to 12)

P(sum to 7)



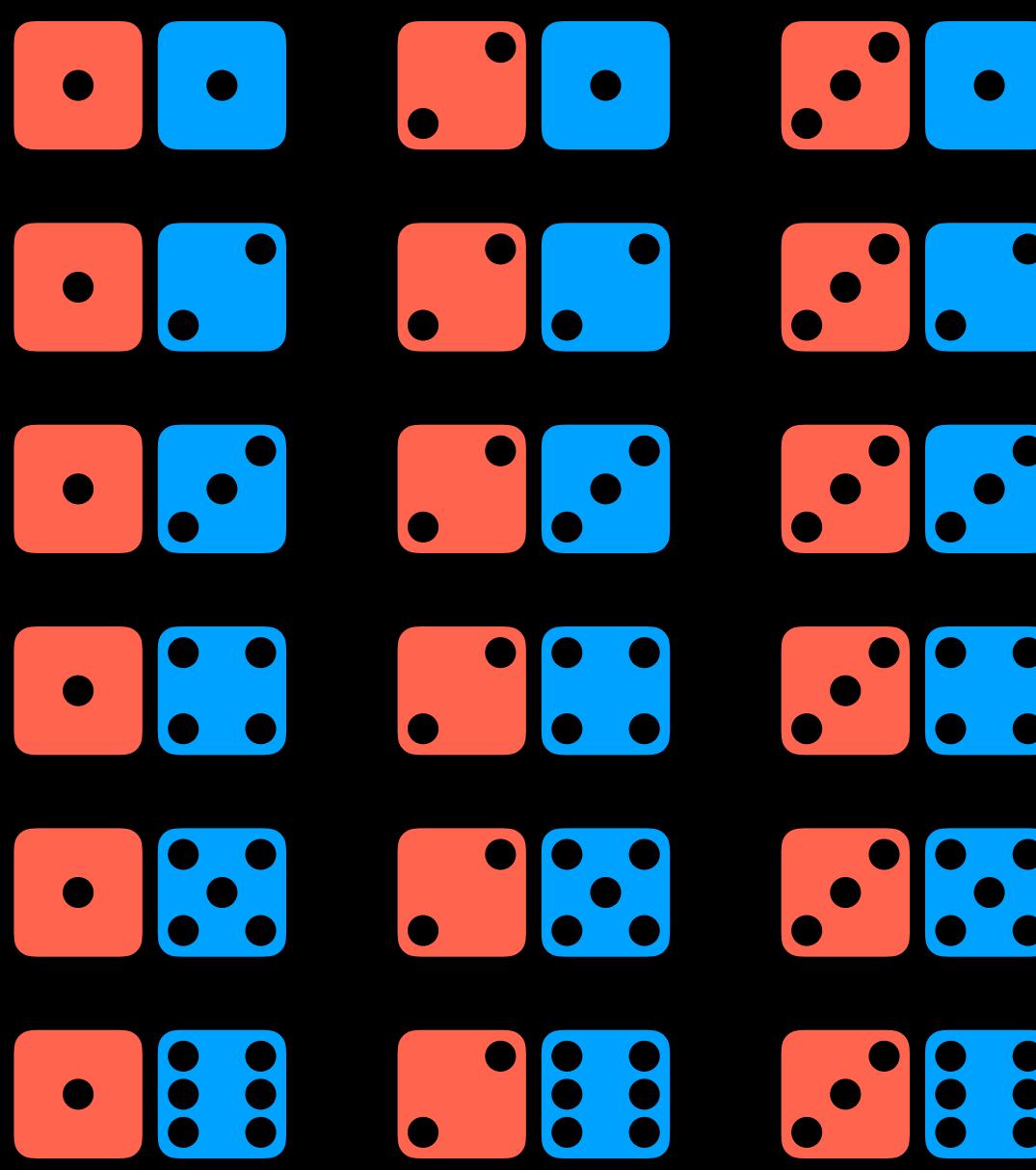
unconditional probability degree of belief in a proposition in the absence of any other evidence

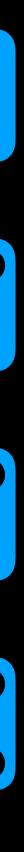
conditional probability

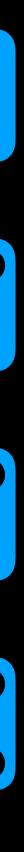
degree of belief in a proposition given some evidence that has already been revealed

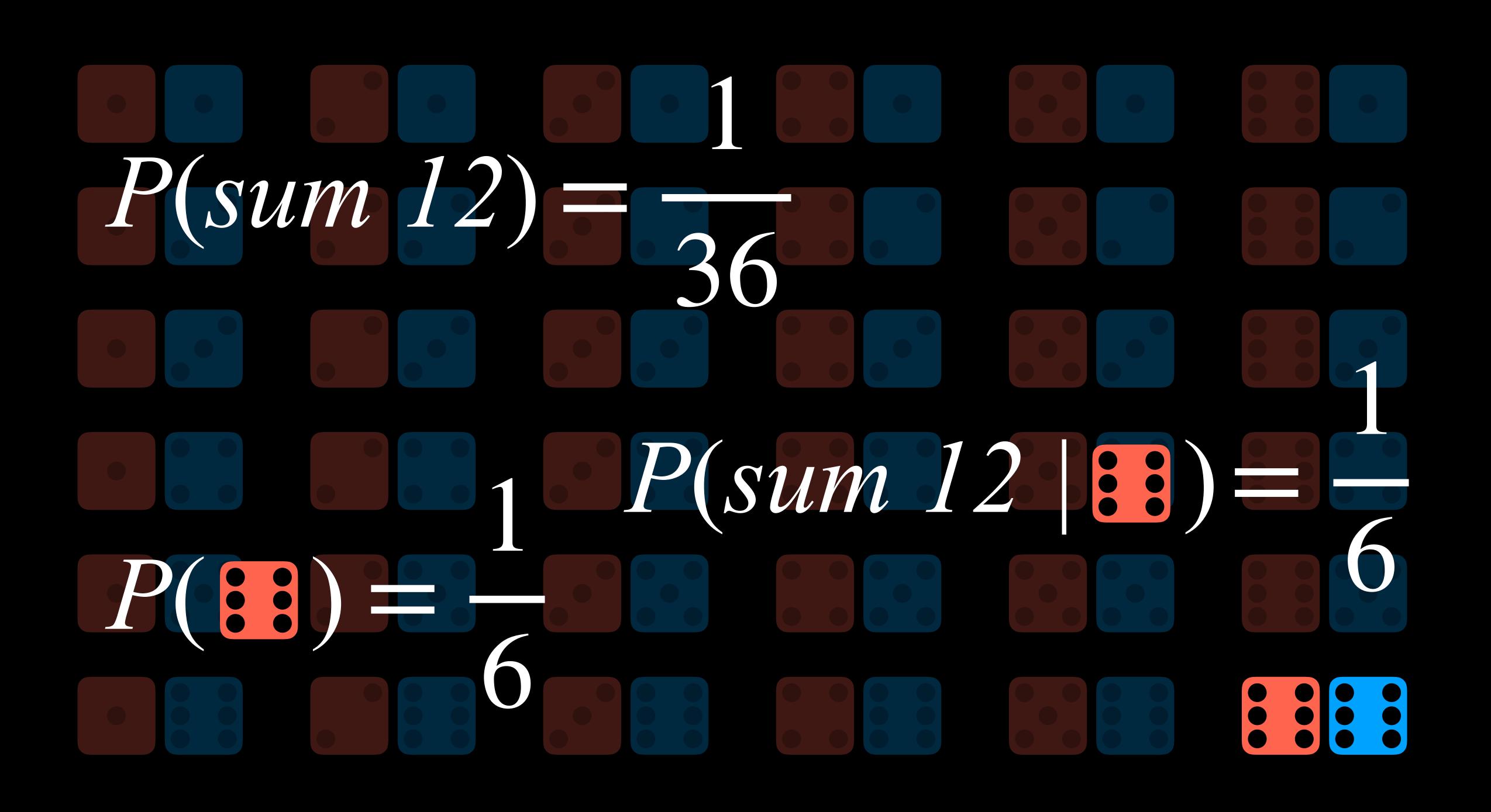
conditional probability $P(a \mid b)$

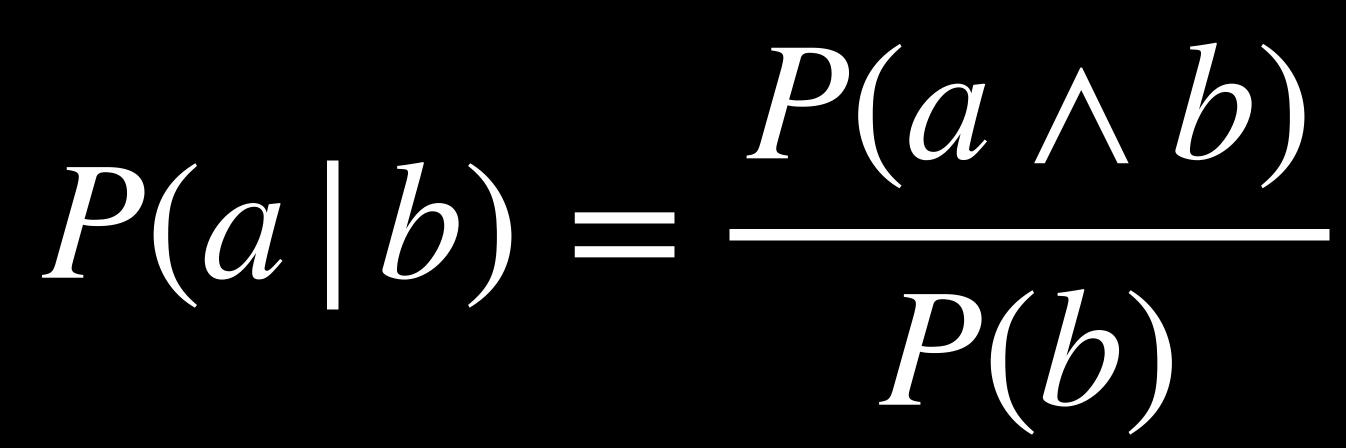
P(route change | traffic conditions)











$P(a \land b) = P(b)P(a \mid b)$ $P(a \land b) = P(a)P(b \mid a)$

a variable in probability theory with a domain of possible values it can take on

Roll

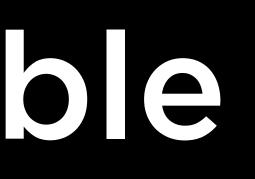
$\{1, 2, 3, 4, 5, 6\}$

Weather

{sun, cloud, rain, wind, snow}

{none, light, heavy}

{on time, delayed, cancelled}



probability distribution P(Flight = on time) = 0.6P(Flight = delayed) = 0.3P(Flight = cancelled) = 0.1

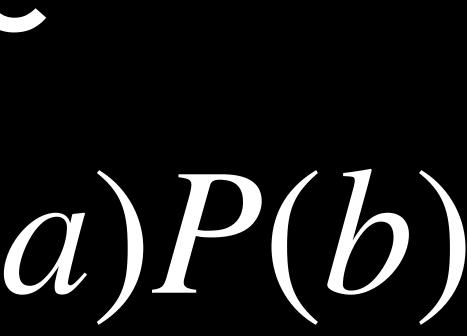
probability distribution $P(Flight) = \langle 0.6, 0.3, 0.1 \rangle$

independence the knowledge that or not affect the probabi

the knowledge that one event occurs does not affect the probability of the other event

independence $P(a \land b) = P(a)P(b \mid a)$

independence $P(a \land b) = P(a)P(b)$



independence $P(\blacksquare \blacksquare) = P(\blacksquare)P(\blacksquare)$

 6
 6
 36

independence $P(\blacksquare \square) \neq P(\blacksquare)P(\blacksquare)$

independence $P(\square\square) \neq P(\square)P(\square\square)$

Bayes' Rule

$P(a \land b) = P(b) P(a \mid b)$

$P(a \land b) = P(a) P(b \mid a)$

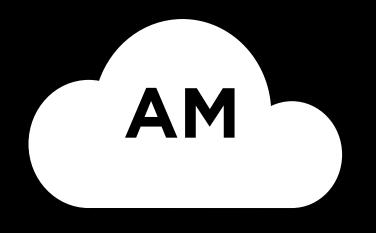
 $P(a) P(b \mid a) = P(b) P(a \mid b)$

Bayes' Rule

$P(b \mid a) = \frac{P(b) \ P(a \mid b)}{P(a \mid b)}$

Bayes' Rule

$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(b)}$

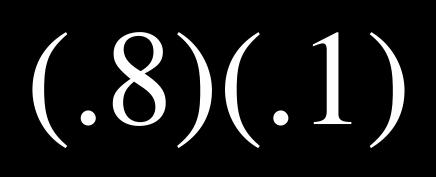


- 80% of rainy afternoons start with cloudy mornings.
- 40% of days have cloudy mornings. 10% of days have rainy afternoons.

Given clouds in the morning, what's the probability of rain in the afternoon?

P(clouds | rain)P(rain)

P(clouds)



P(cloudy morning | rainy afternoon)

we can calculate

P(rainy afternoon | cloudy morning)

we can calculate

P(unknown cause visible effect)

P(medical test result | disease)

we can calculate

P(disease medical test result)

we can calculate

P(counterfeit bill | blurry text)

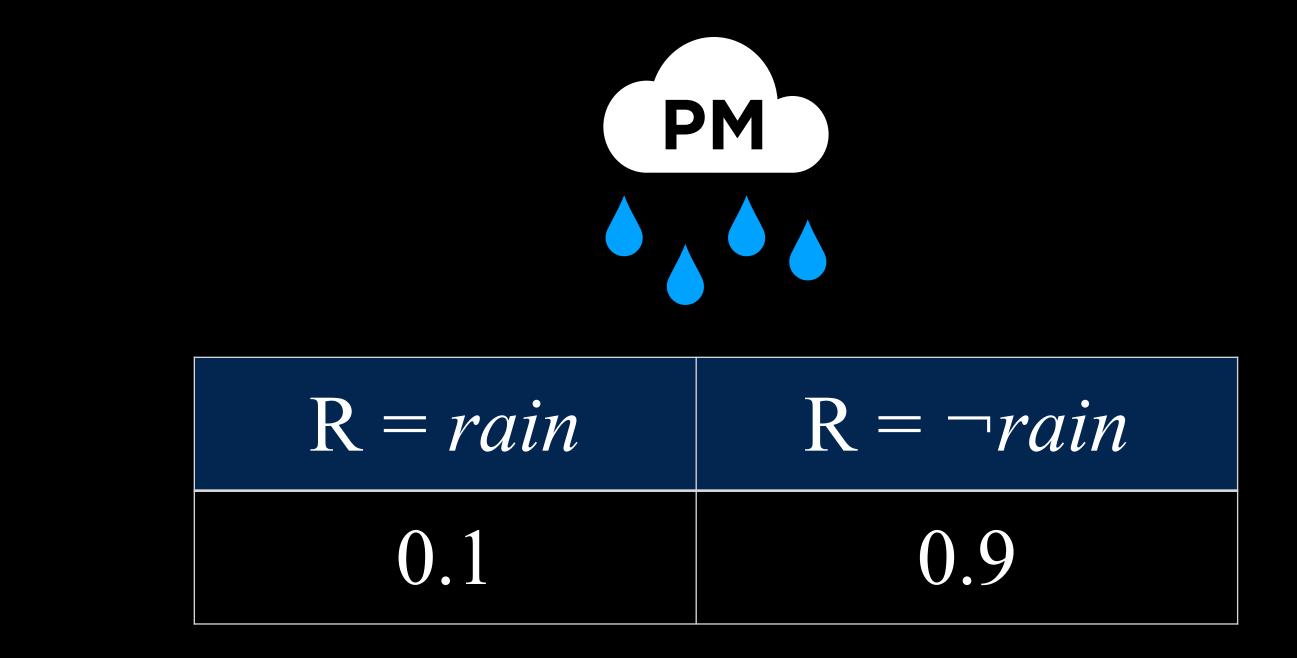
P(blurry text | counterfeit bill)

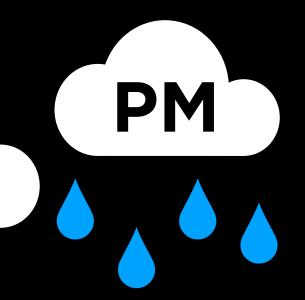
Joint Probability



$C = cloud \qquad C = \neg cloud \\ 0.4 \qquad 0.6$

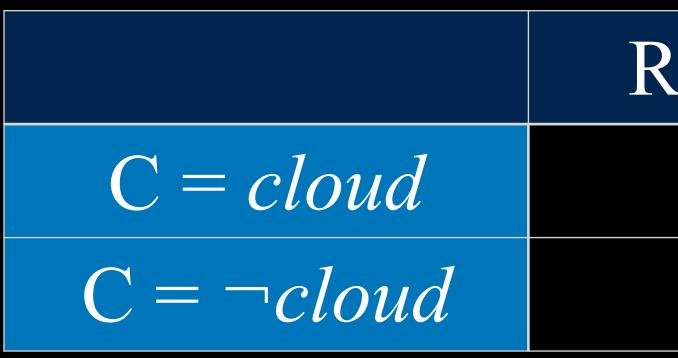
	R = rain	$R = \neg rain$
C = cloud	0.08	0.32
$C = \neg cloud$	0.02	0.58





$\mathbf{P}(C \mid rain)$ $\mathbf{P}(C \mid rain) = \frac{\mathbf{P}(C, rain)}{\mathbf{P}(rain)} = \alpha \mathbf{P}(C, rain)$

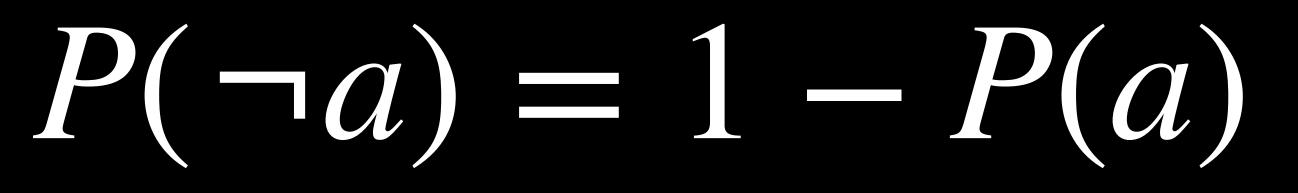
$= \alpha \langle 0.08, 0.02 \rangle = \langle 0.8, 0.2 \rangle$



= rain	$R = \neg rain$
0.08	0.32
0.02	0.58

Probability Rules

Negation



Inclusion-Exclusion

$P(a \lor b) = P(a) + P(b) - P(a \land b)$

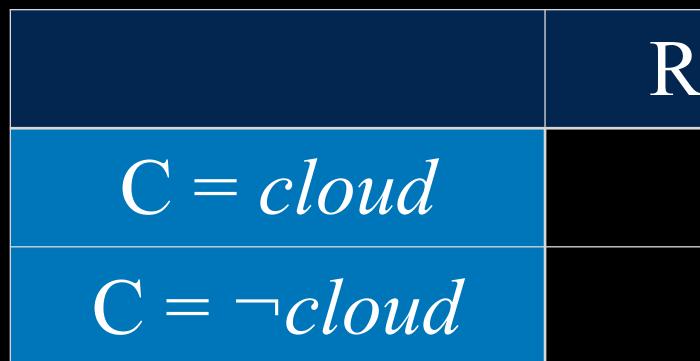
Marginalization

$P(a) = P(a, b) + P(a, \neg b)$

Marginalization

$P(X = x_i) = \sum_{i=1}^{n} P(X = x_i, Y = y_i)$

Marginalization



P(C = cloud) $= P(C = cloud, R = rain) + P(C = cloud, R = \neg rain)$ = 0.08 + 0.32= 0.40

= rain	$R = \neg rain$
0.08	0.32
0.02	0.58

Conditioning

 $\overline{P(a)} = P(a \mid b)\overline{P(b)} + P(a \mid \neg b)P(\neg b)$

Conditioning

$P(X = x_i) = \sum_{i=1}^{n} P(X = x_i | Y = y_j) P(Y = y_j)$

Bayesian Networks

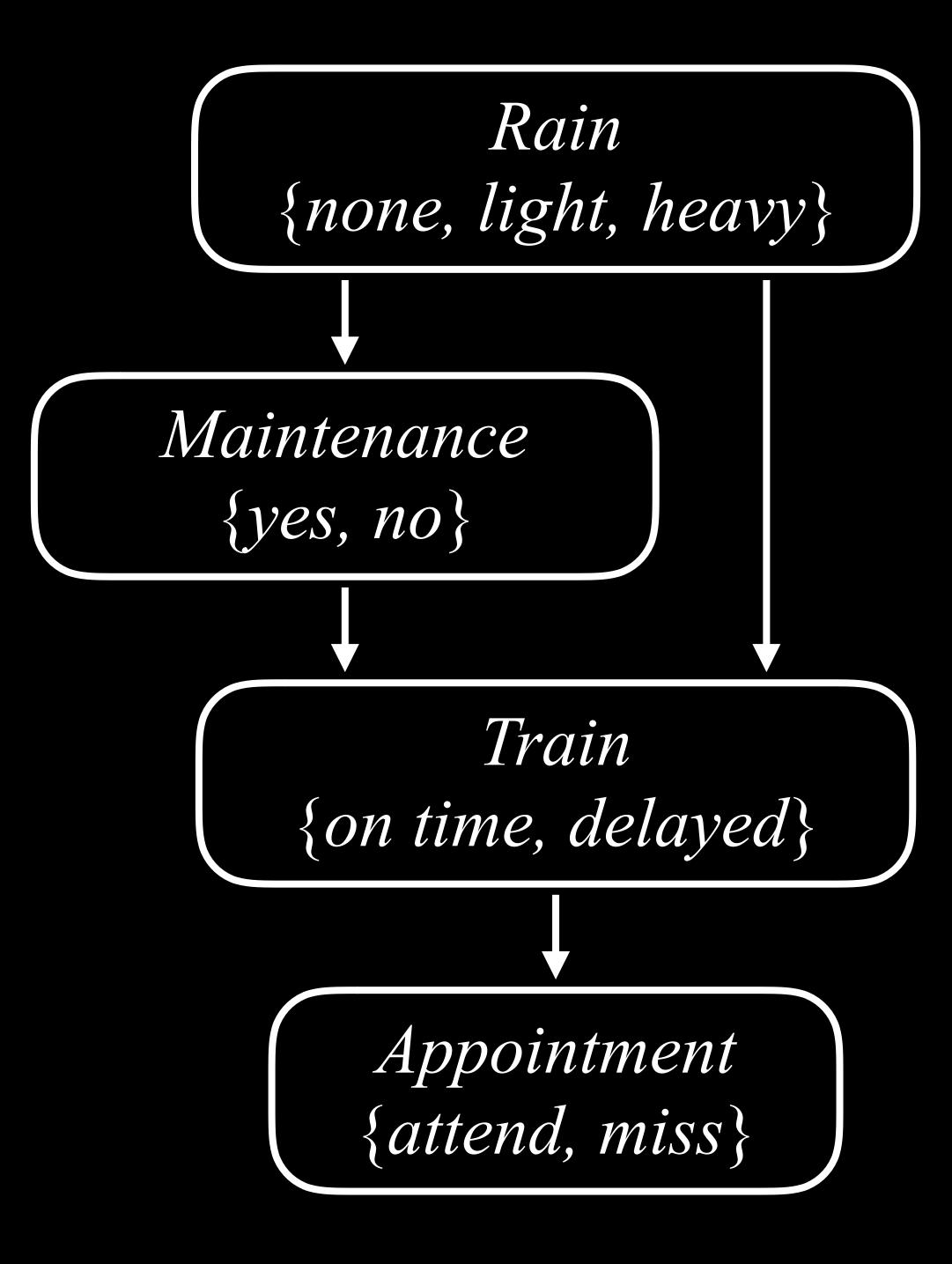
Bayesian network

data structure that represents the dependencies among random variables

Bayesian network

- directed graph
- each node represents a random variable
- arrow from X to Y means X is a parent of Y
- each node X has probability distribution
 P(X | Parents(X))

a random variable ans X is a parent of Y ability distribution

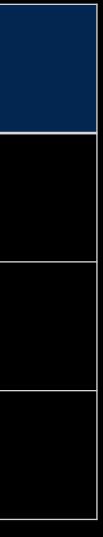


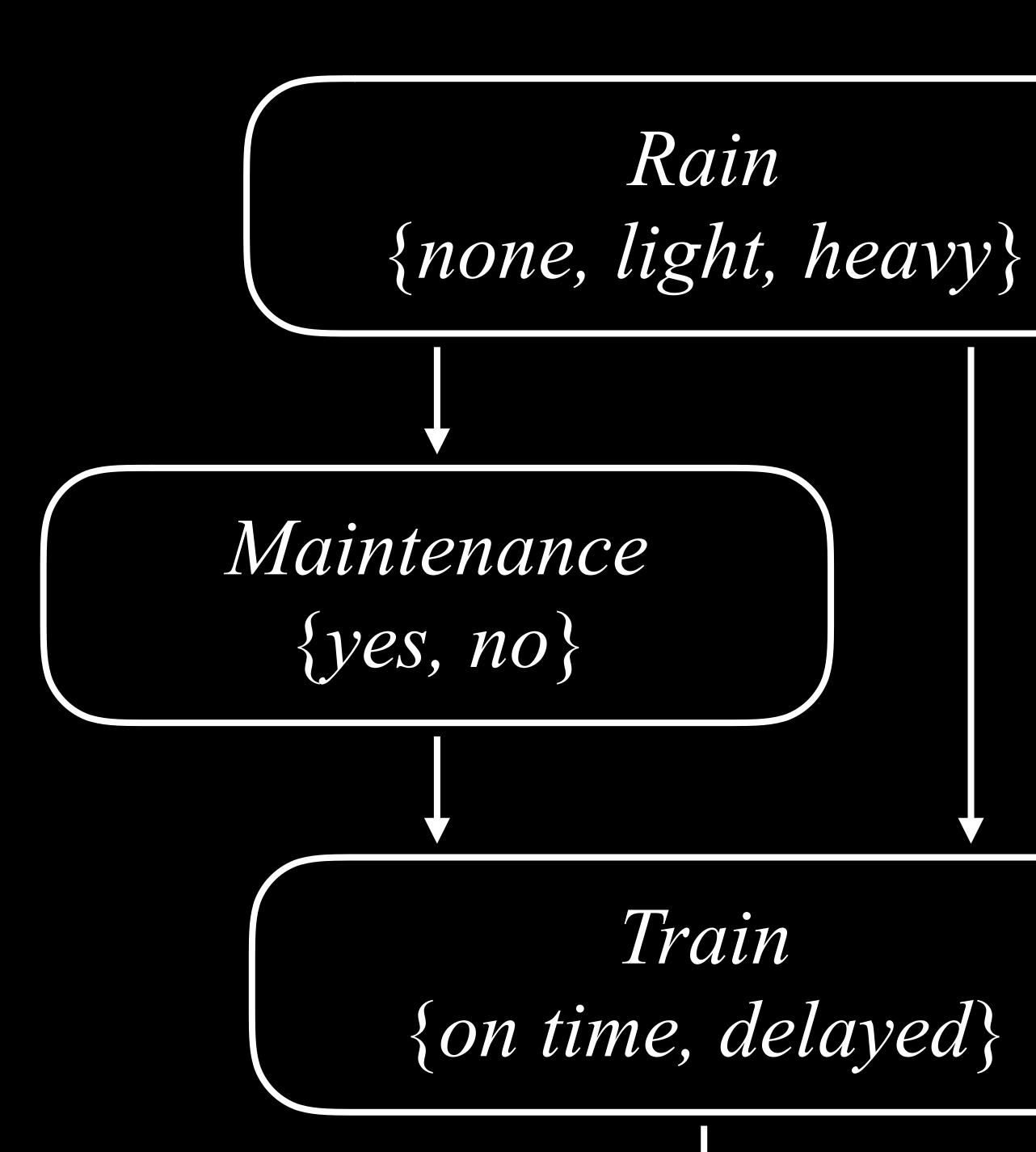
Rain {none, light, heavy

	none	light	heavy
<i>y</i> }	0.7	0.2	0.1

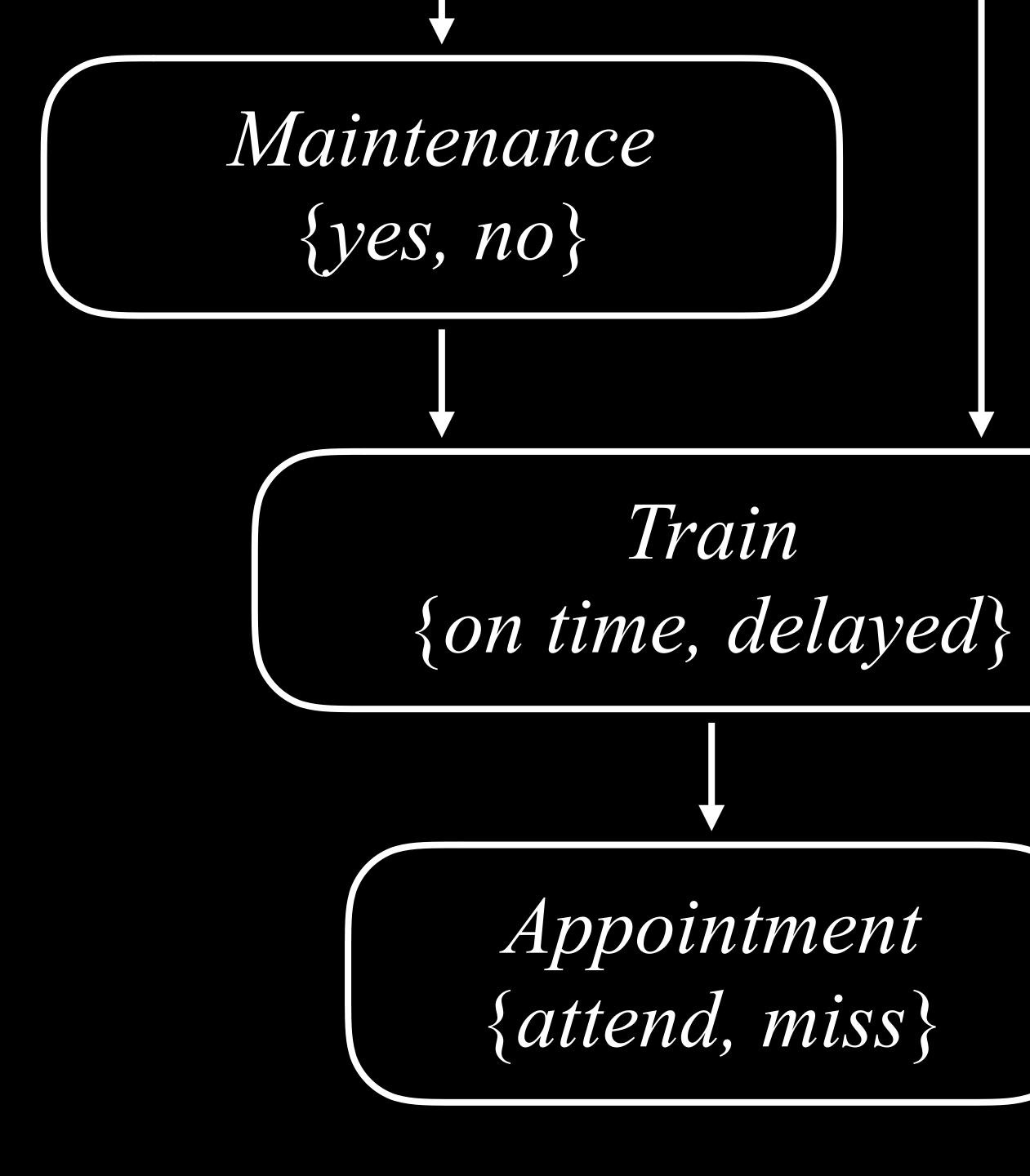
Rain {none, light, heavy} Maintenance $\{yes, no\}$

R	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

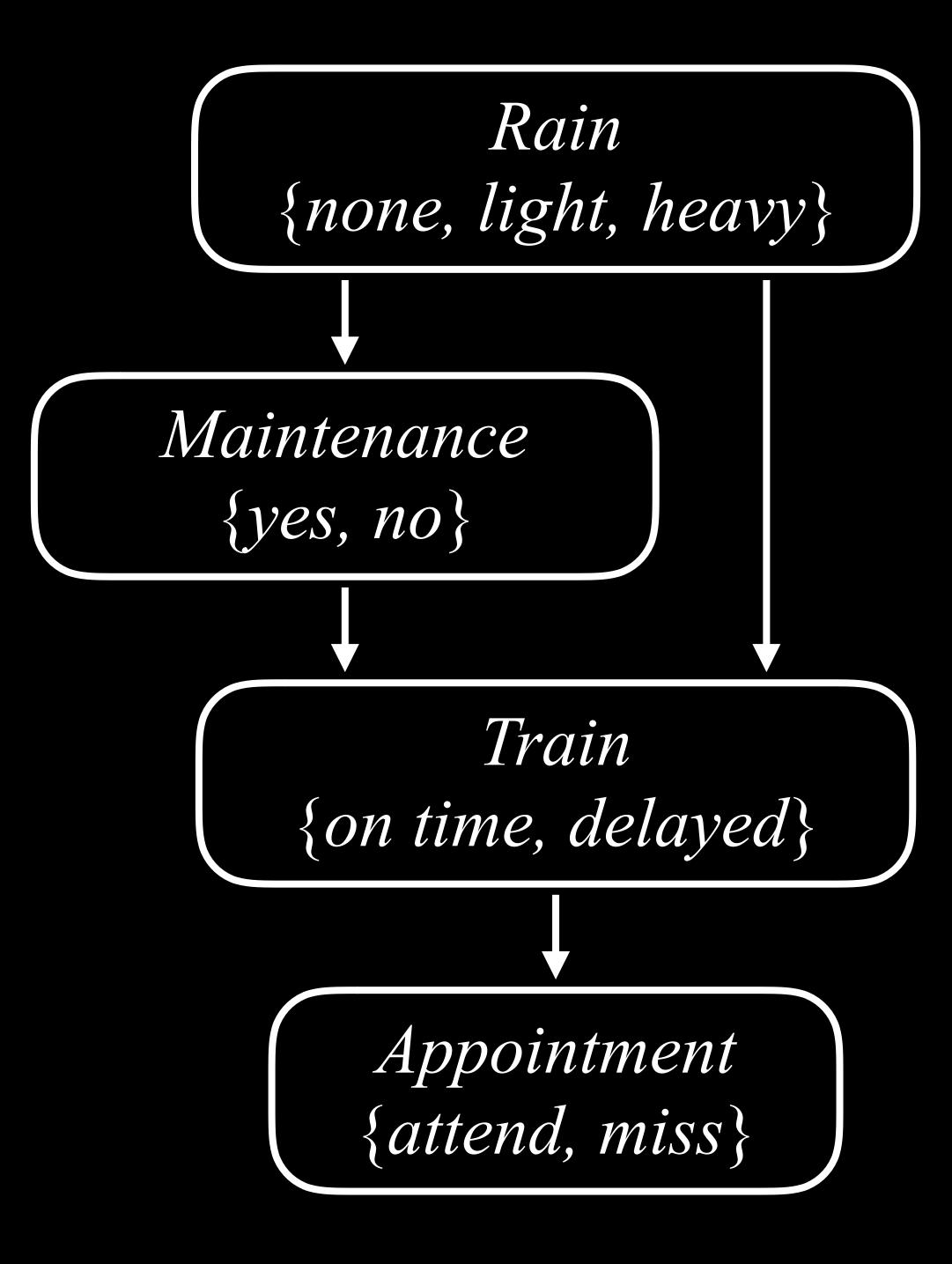


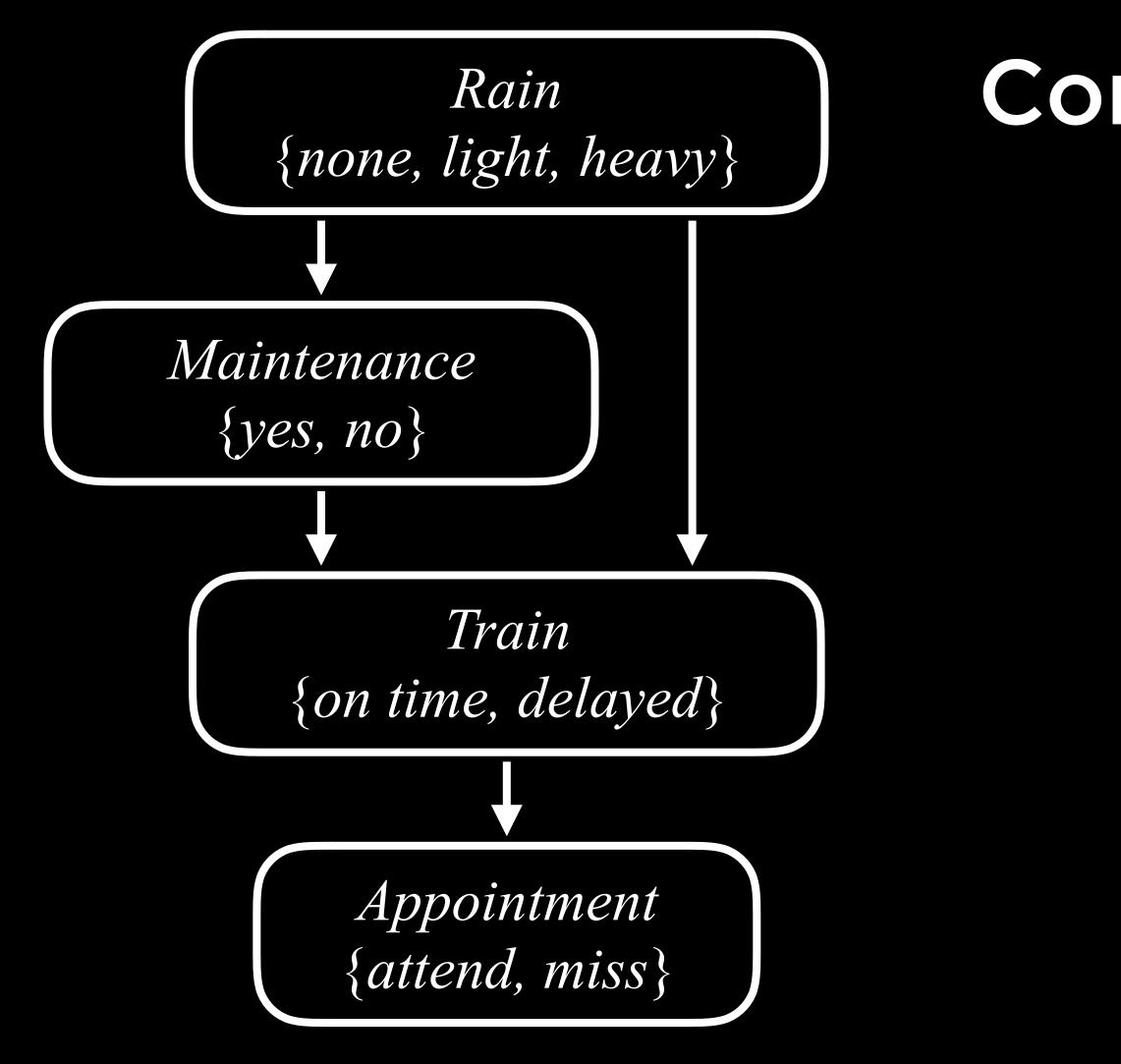


R	M	on time	delaye
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

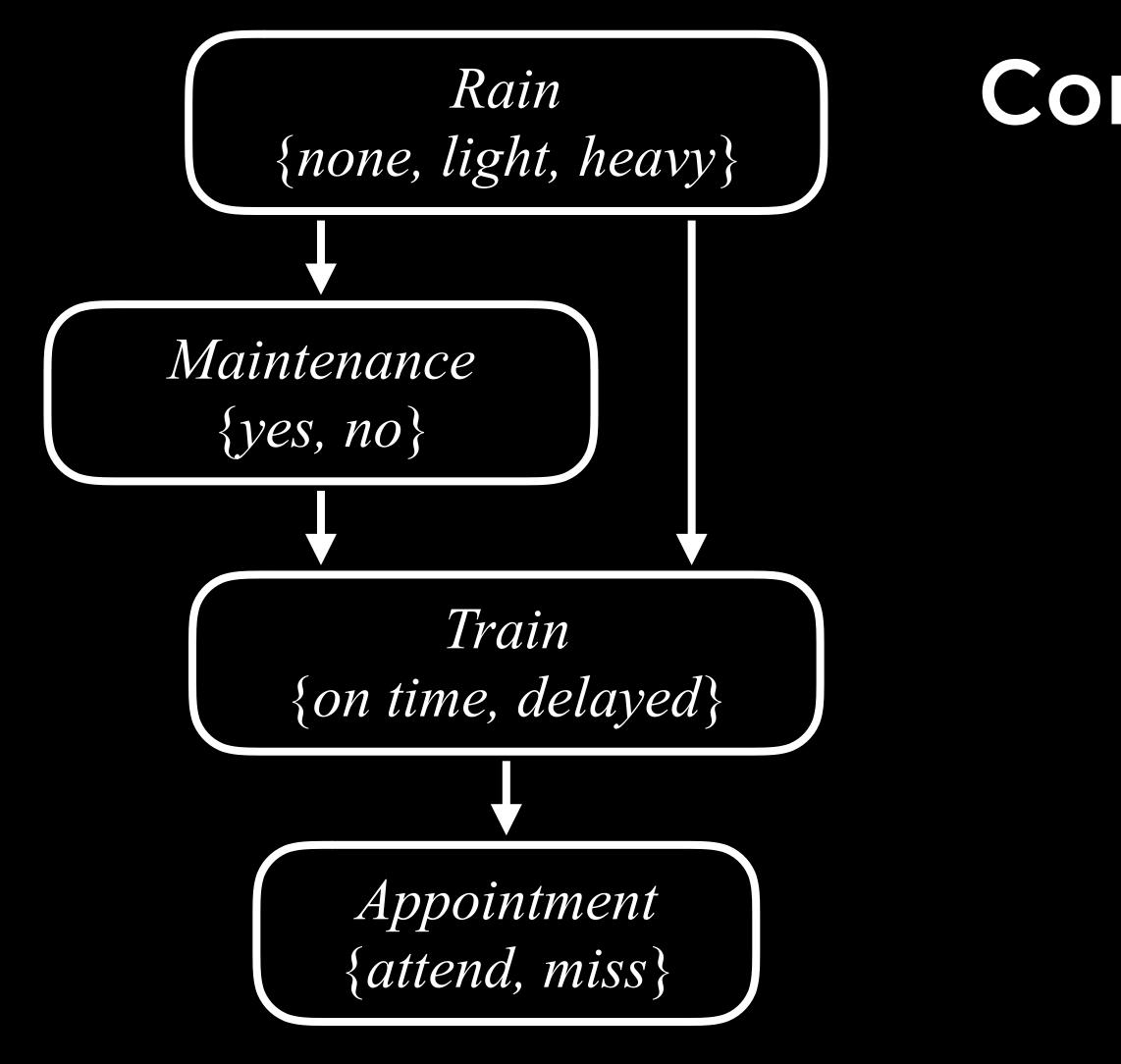


<u>T</u>	attend	miss
on time	0.9	0.1
delayed	0.6	0.4





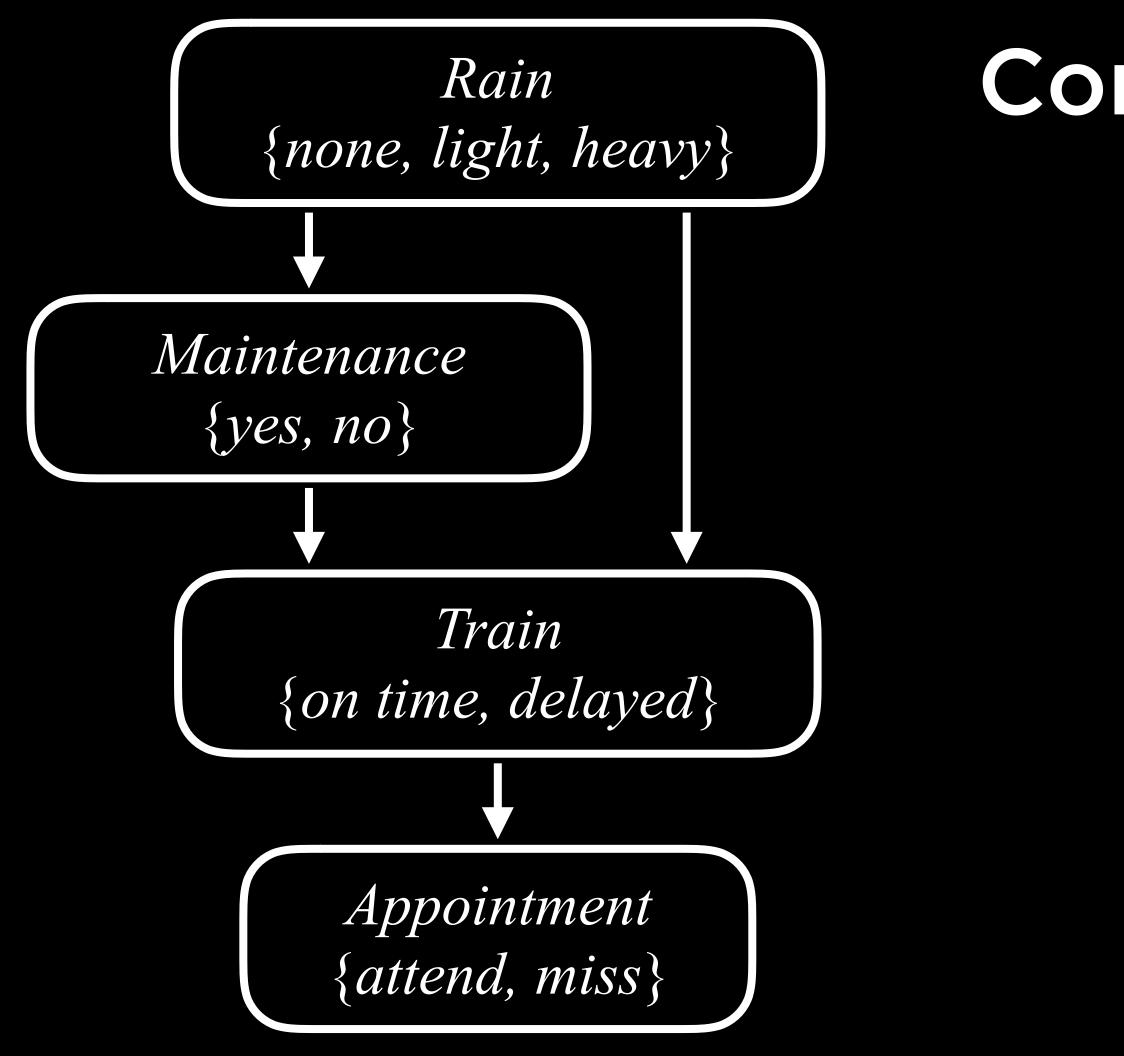
Computing Joint Probabilities



Computing Joint Probabilities

P(light, no)

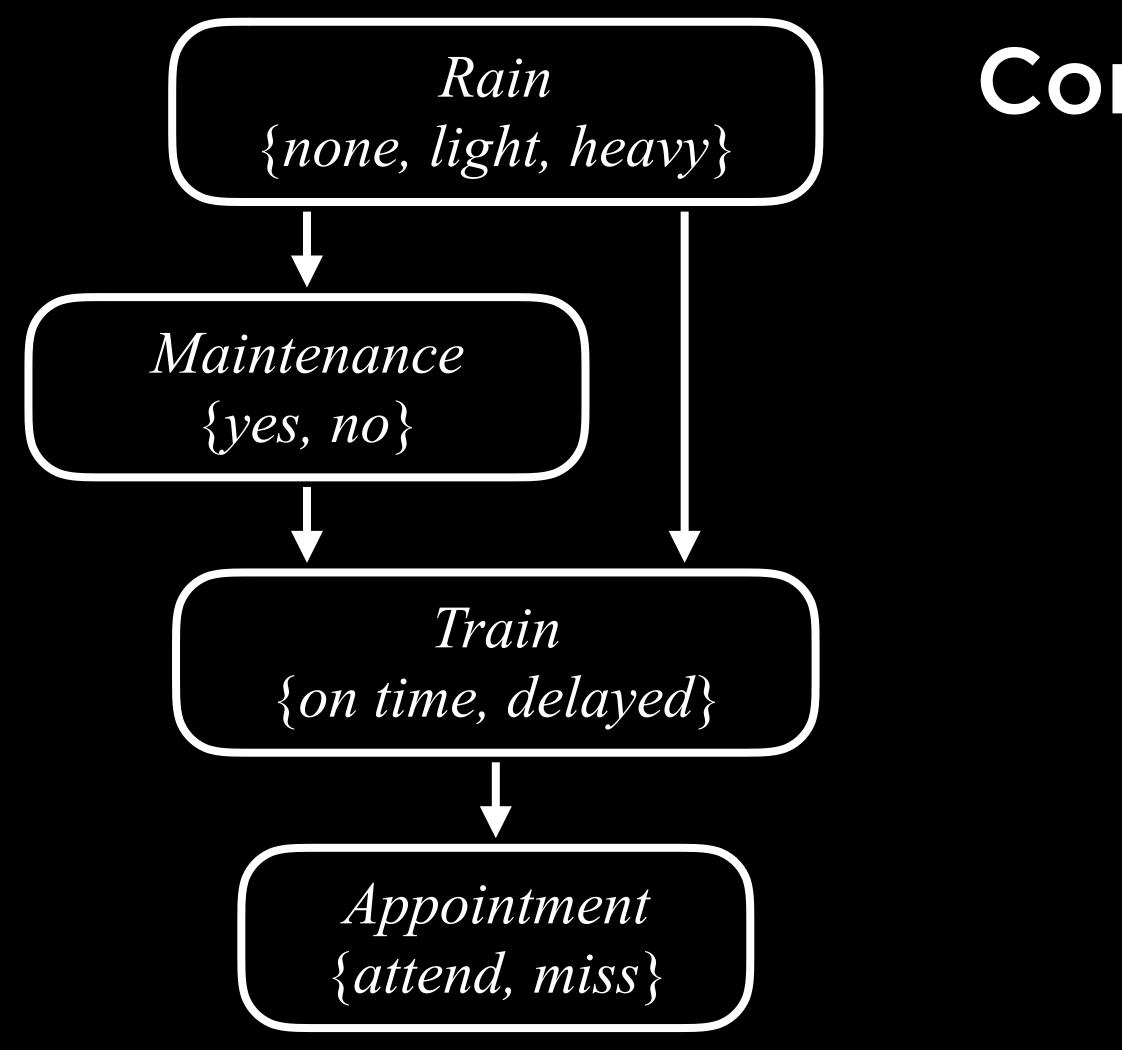
P(light) P(no | light)



P(light) P(no | light) P(delayed | light, no)

Computing Joint Probabilities

P(light, no, delayed)



P(light) P(no | light) P(delayed | light, no) P(miss | delayed)

Computing Joint Probabilities

P(light, no, delayed, miss)

Inference

Inference

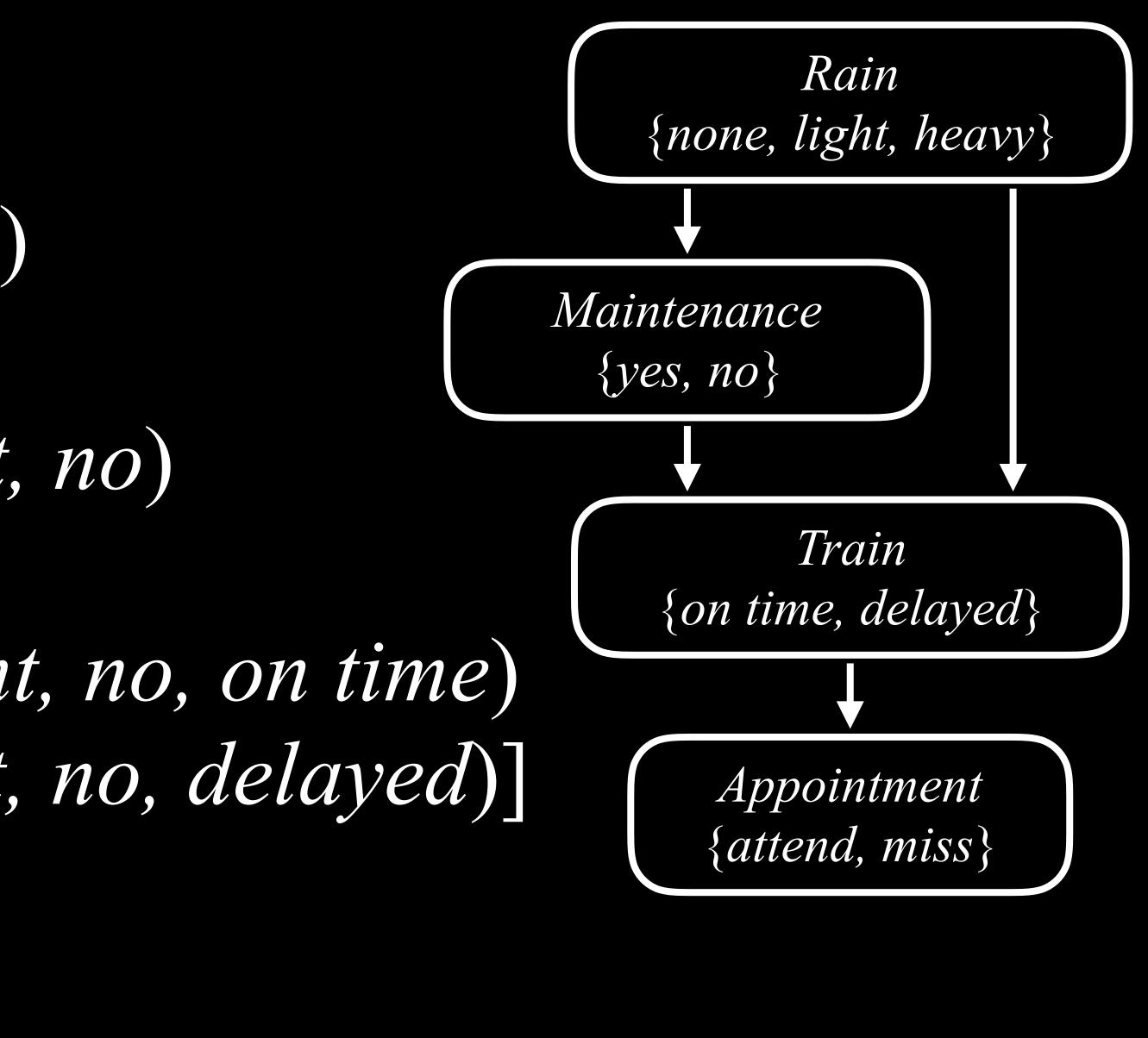
- Goal: Calculate P(X | e)

• Query X: variable for which to compute distribution • Evidence variables E: observed variables for event e• Hidden variables Y: non-evidence, non-query variable.

P(Appointment | light, no)

 $= \alpha P(Appointment, light, no)$

= α [P(Appointment, light, no, on time)
+ P(Appointment, light, no, delayed)]



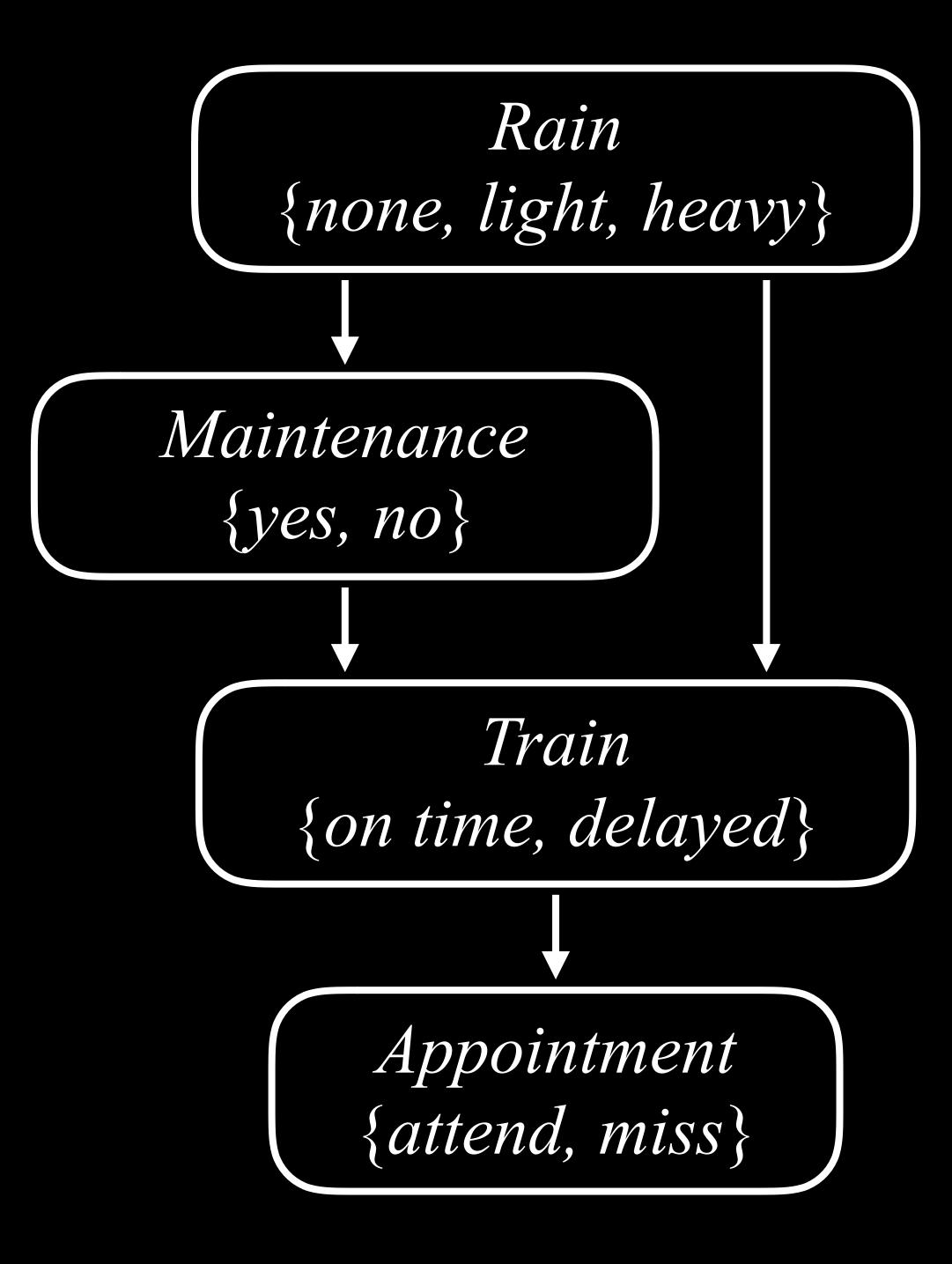
Inference by Enumeration

$P(X | e) = \alpha P(X, e) = \alpha \sum P(X, e, y)$

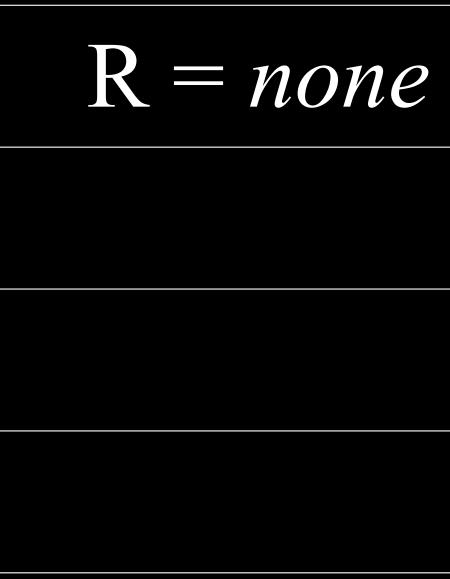
X is the query variable. e is the evidence. y ranges over values of hidden variables. α normalizes the result.

Approximate Inference

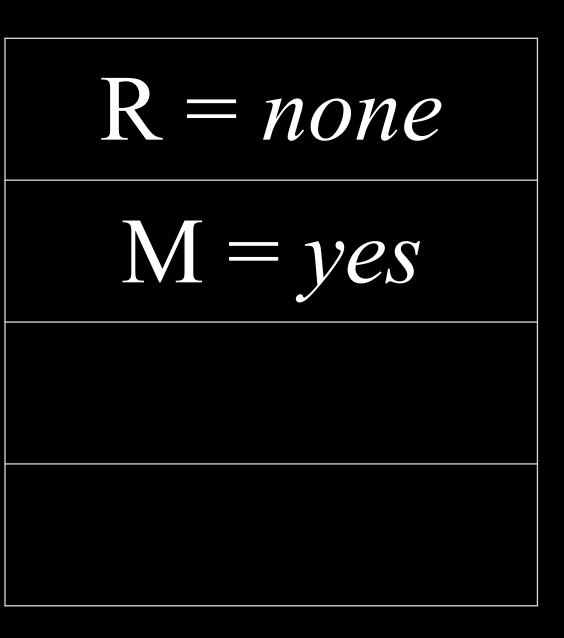
Sampling



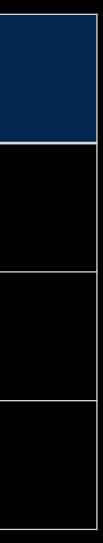
Rain {none, light, heavy}

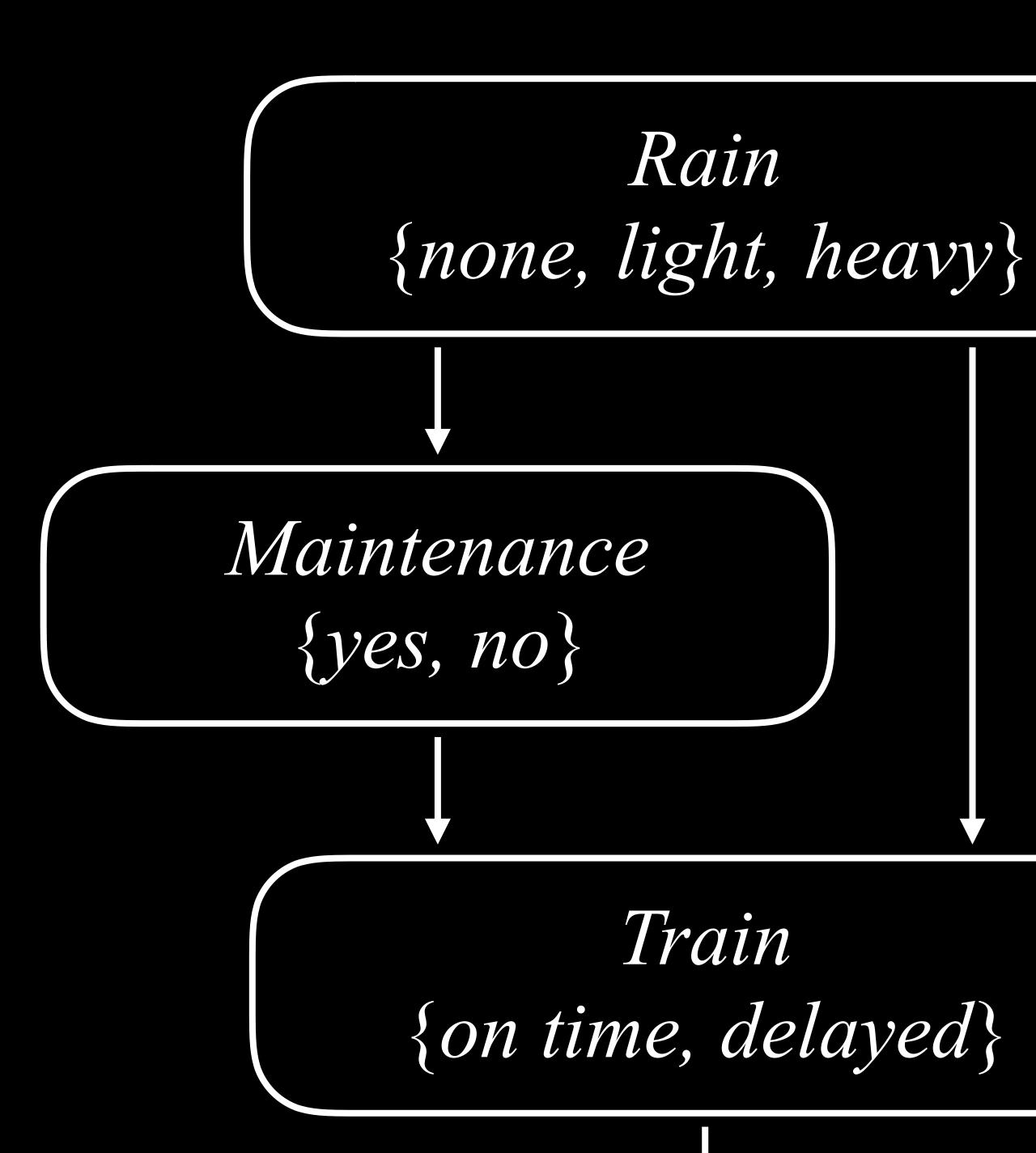


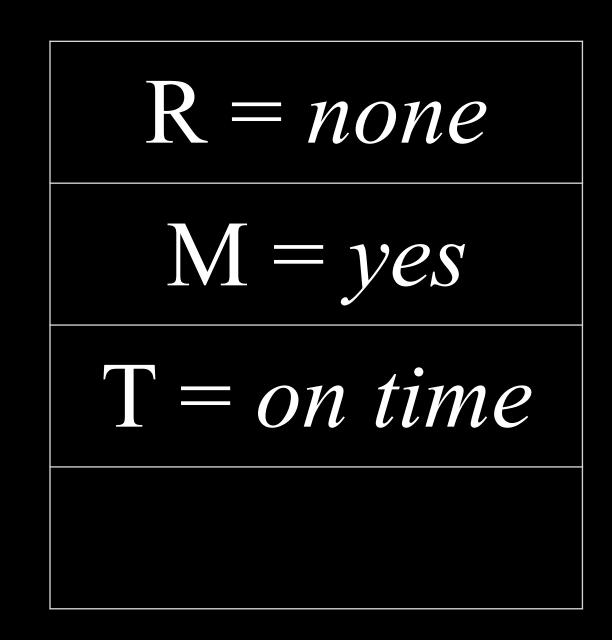
Rain {none, light, heavy} Maintenance $\{yes, no\}$



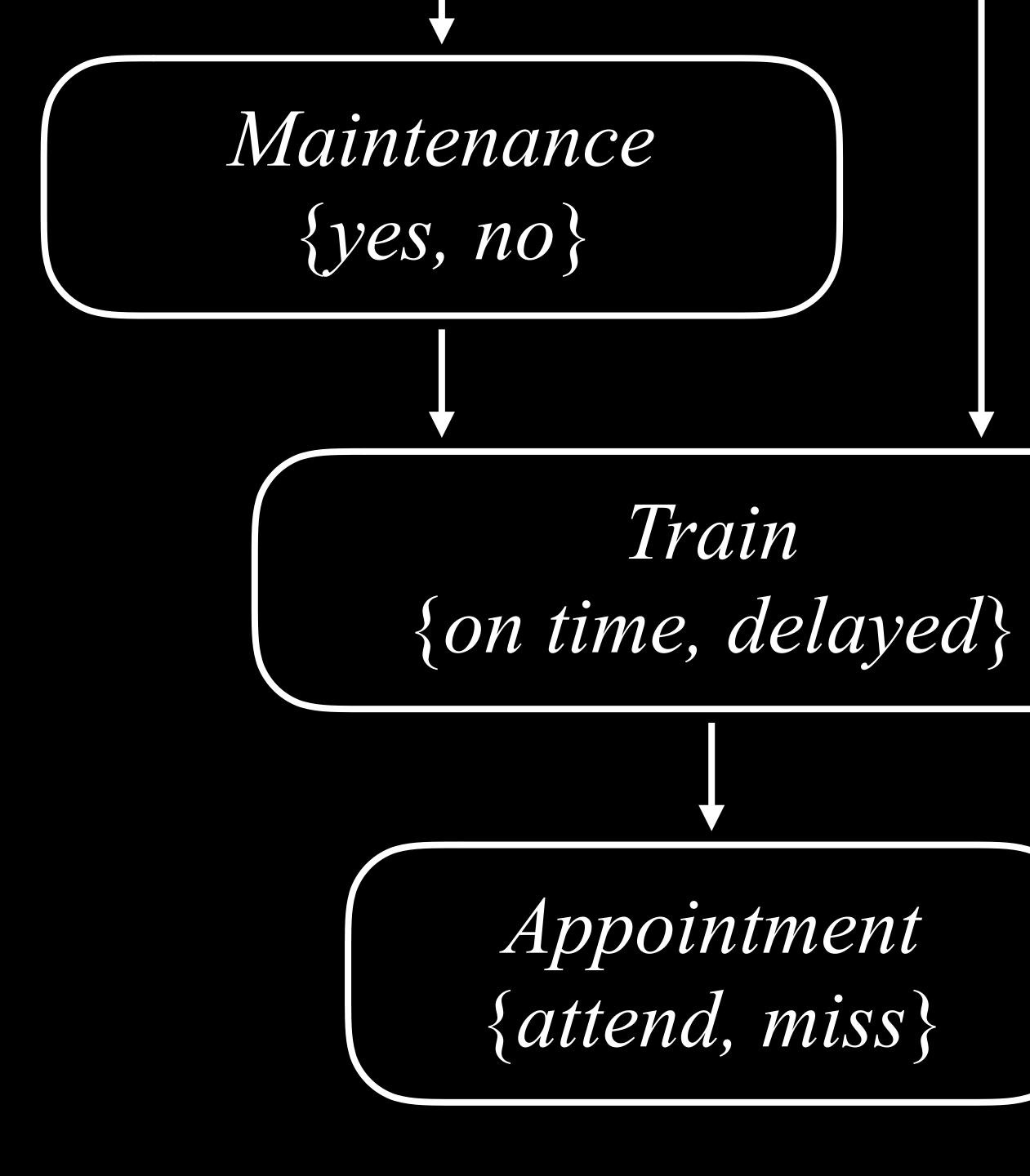
R	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

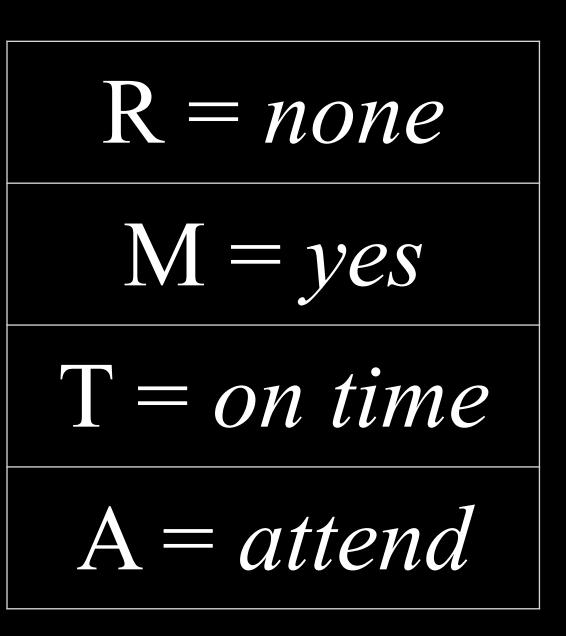






R	M	on time	delaye
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5





<u>T</u>	attend	miss
on time	0.9	0.1
delayed	0.6	0.4

$$R = none$$
$$M = yes$$
$$T = on tim$$
$$A = attence$$

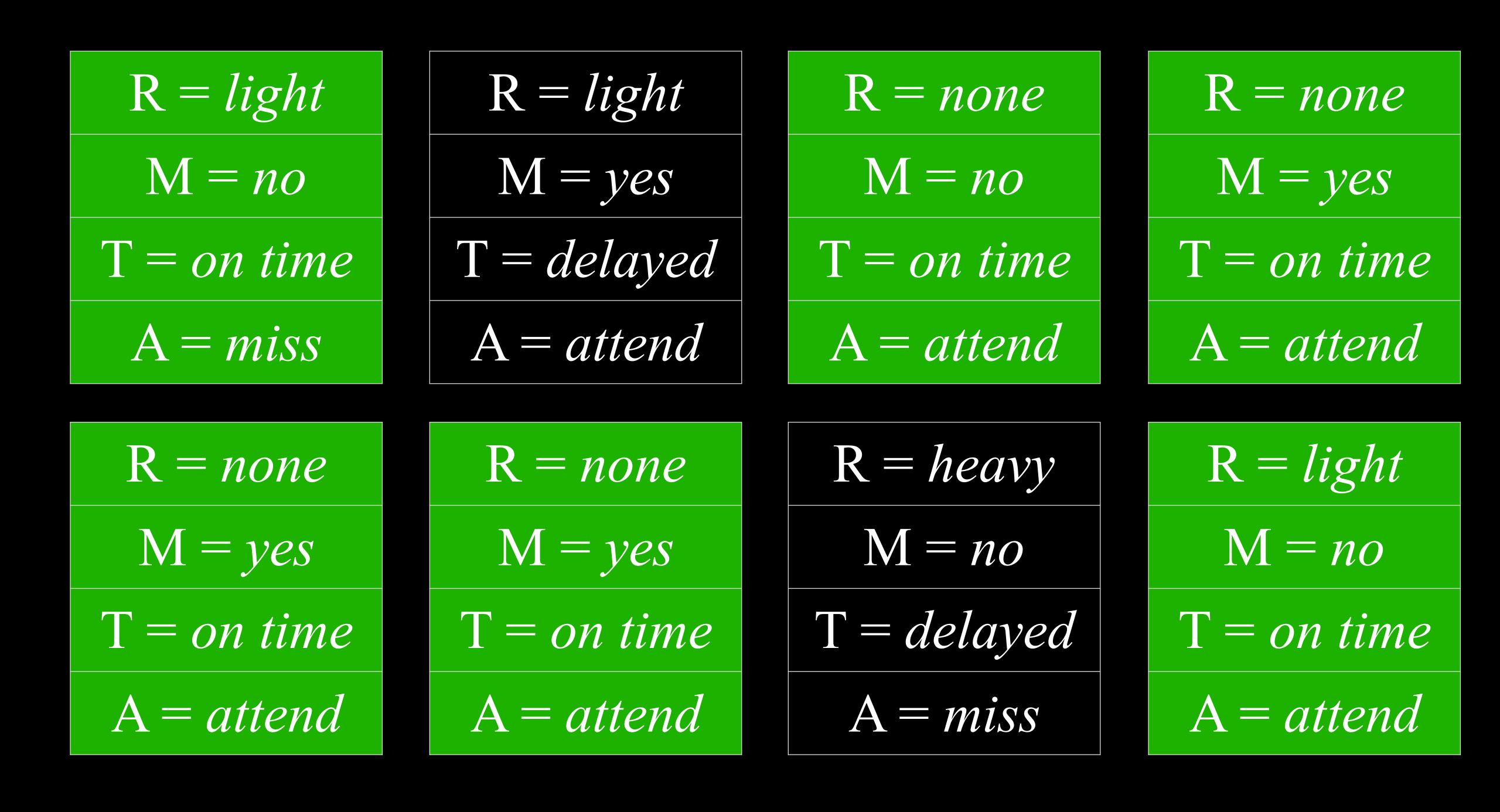
$$R = light$$
 $R = light$ $M = no$ $M = yes$ $T = on time$ $T = delayed$ $A = miss$ $T = delayed$ $A = miss$ $A = attend$ $R = none$ $R = none$ $M = yes$ $M = yes$ $T = on time$ $T = on time$ $A = attend$ $A = attend$

R = noneR = noneM = yesM = noT = on timeT = on timeA = attendA = attendR = light $\mathbf{R} = heavy$ M = noM = noT = delayedT = on timeA = missA = attend

P(Train = on time)?

$$R = light$$
 $R = light$ $M = no$ $M = yes$ $T = on time$ $T = delayed$ $A = miss$ $T = delayed$ $A = miss$ $A = attend$ $R = none$ $R = none$ $M = yes$ $M = yes$ $T = on time$ $T = on time$ $A = attend$ $A = attend$

R = noneR = noneM = yesM = noT = on timeT = on timeA = attendA = attendR = light $\mathbf{R} = heavy$ M = noM = noT = delayedT = on timeA = missA = attend



P(Rain = light | Train = on time)?

$$R = light$$
 $R = light$ $M = no$ $M = yes$ $T = on time$ $T = delayed$ $A = miss$ $T = delayed$ $A = miss$ $A = attend$ $R = none$ $R = none$ $M = yes$ $M = yes$ $T = on time$ $T = on time$ $A = attend$ $A = attend$

R = noneR = noneM = yesM = noT = on timeT = on timeA = attendA = attendR = light $\mathbf{R} = heavy$ M = noM = noT = delayedT = on timeA = missA = attend

$$R = light$$

 $M = no$ $R = light$
 $M = yes$ $R = none$
 $M = no$ $R = none$
 $M = yes$ $T = on time$
 $A = miss$ $T = delayed$
 $A = attend$ $T = on time$
 $A = attend$ $R = none$
 $A = attend$ $R = none$
 $M = yes$ $R = none$
 $A = attend$ $R = heavy$
 $M = no$ $R = light$
 $M = no$ $R = none$
 $M = yes$ $R = none$
 $R = none$ $R = light$
 $M = no$ $R = none$
 $M = yes$ $R = none$
 $M = no$ $R = light$
 $M = no$ $T = on time$
 $A = attend$ $A = attend$ $A = attend$

$$R = light$$
 $R = light$ $M = no$ $M = yes$ $T = on time$ $T = delayed$ $A = miss$ $T = delayed$ $A = miss$ $A = attend$ $R = none$ $R = none$ $M = yes$ $M = yes$ $T = on time$ $M = yes$ $A = attend$ $A = attend$

R = noneR = noneM = yesM = noT = on timeT = on timeA = attendA = attendR = heavyR = lightM = noM = noT = delayedT = on timeA = missA = attend

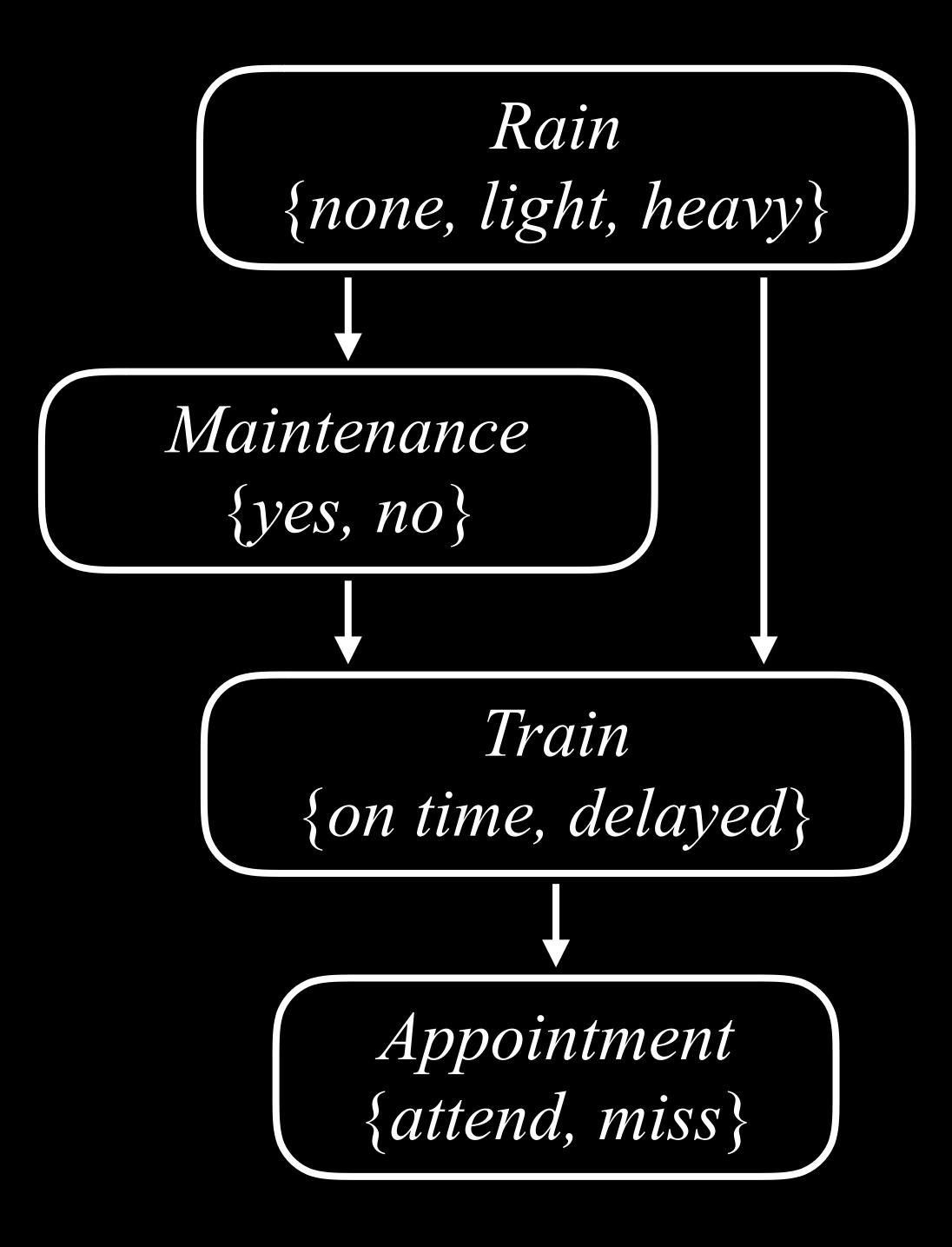
Rejection Sampling

Likelihood Weighting

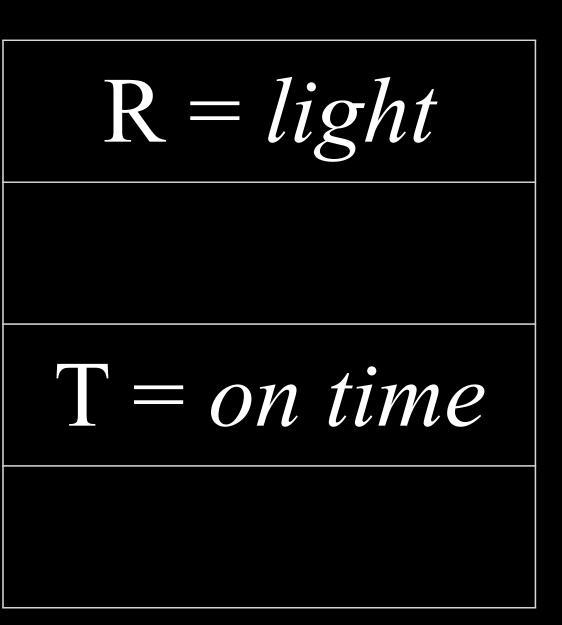
Likelihood Weighting

- Start by fixing the values for evidence variables.
- Sample the non-evidence variables using conditional probabilities in the Bayesian Network.
- Weight each sample by its **likelihood**: the probability of all of the evidence.

P(Rain = light | Train = on time)?

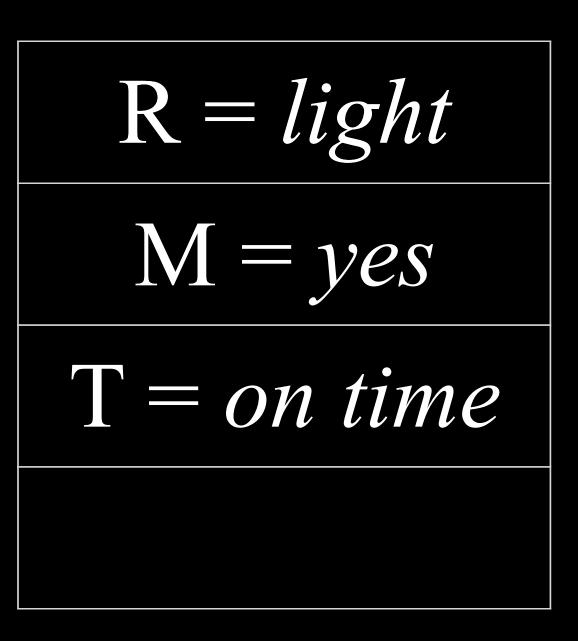


Rain {none, light, heavy}

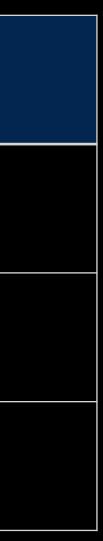


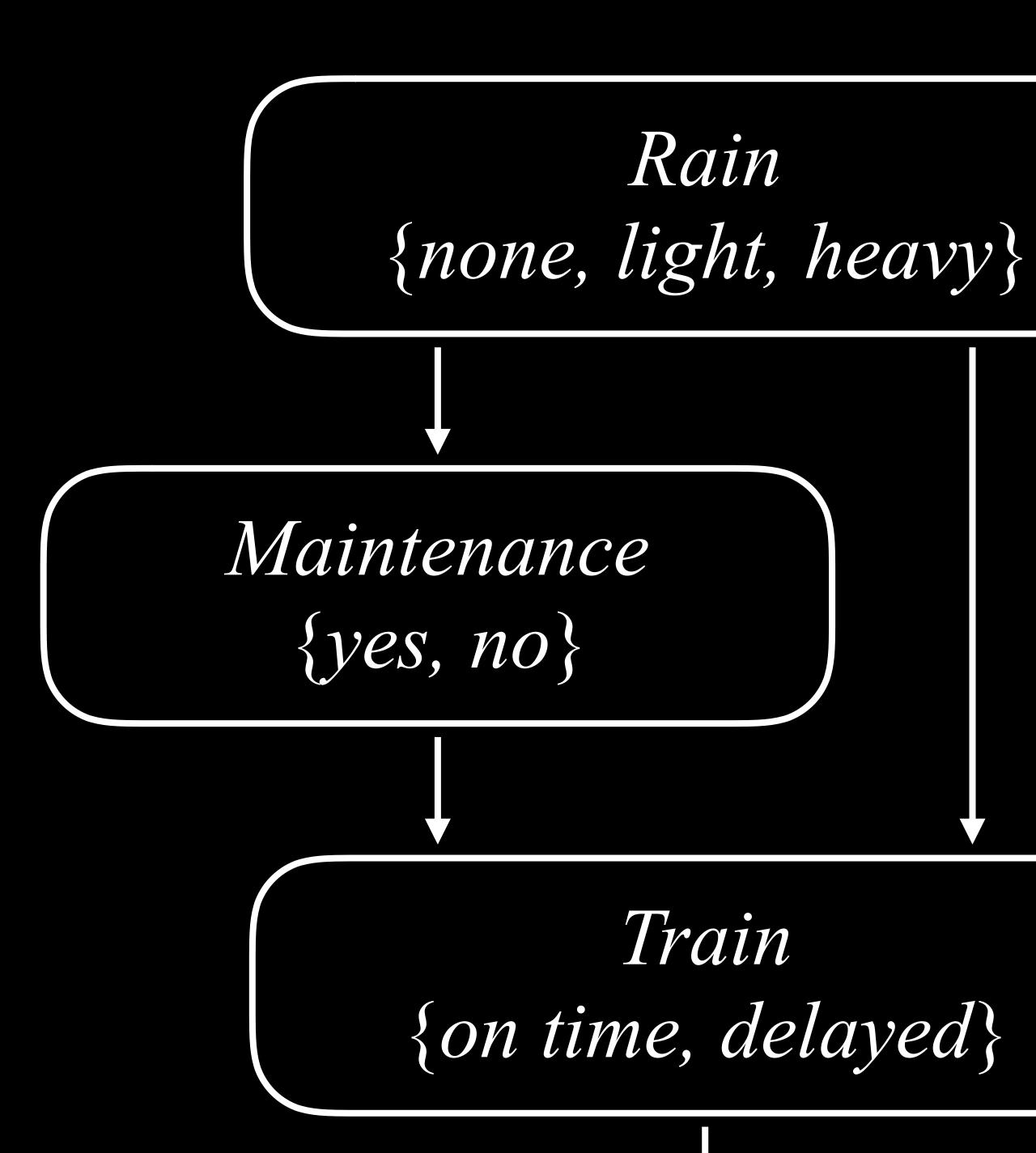
	none	light	heavy
}	0.7	0.2	0.1

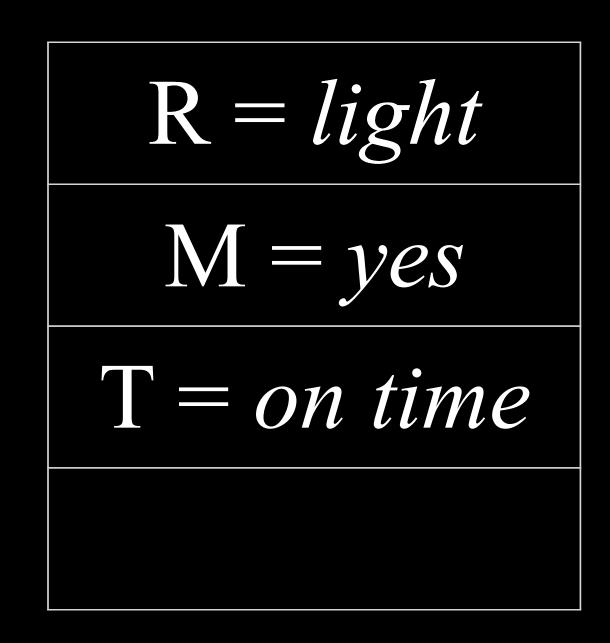
Rain {none, light, heavy} Maintenance $\{yes, no\}$



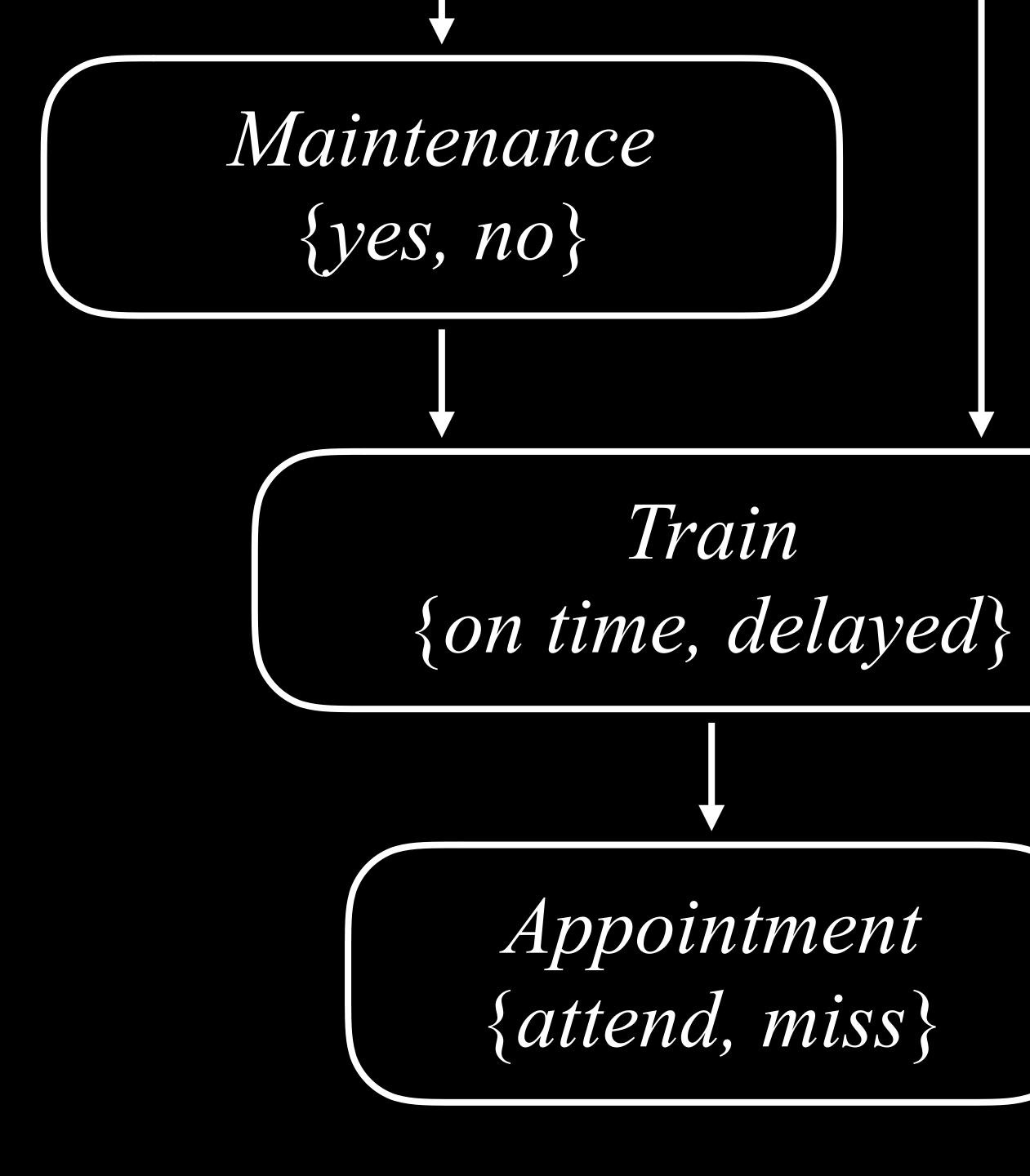
R	yes	no
none	0.4	0.6
light	0.2	0.8
heavy	0.1	0.9

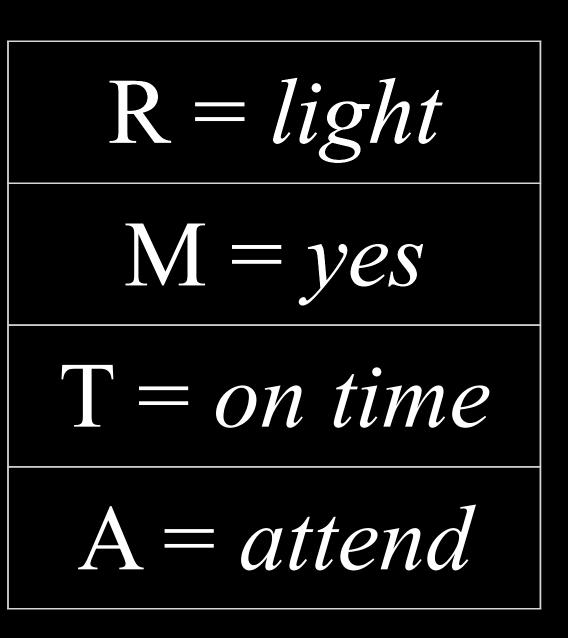




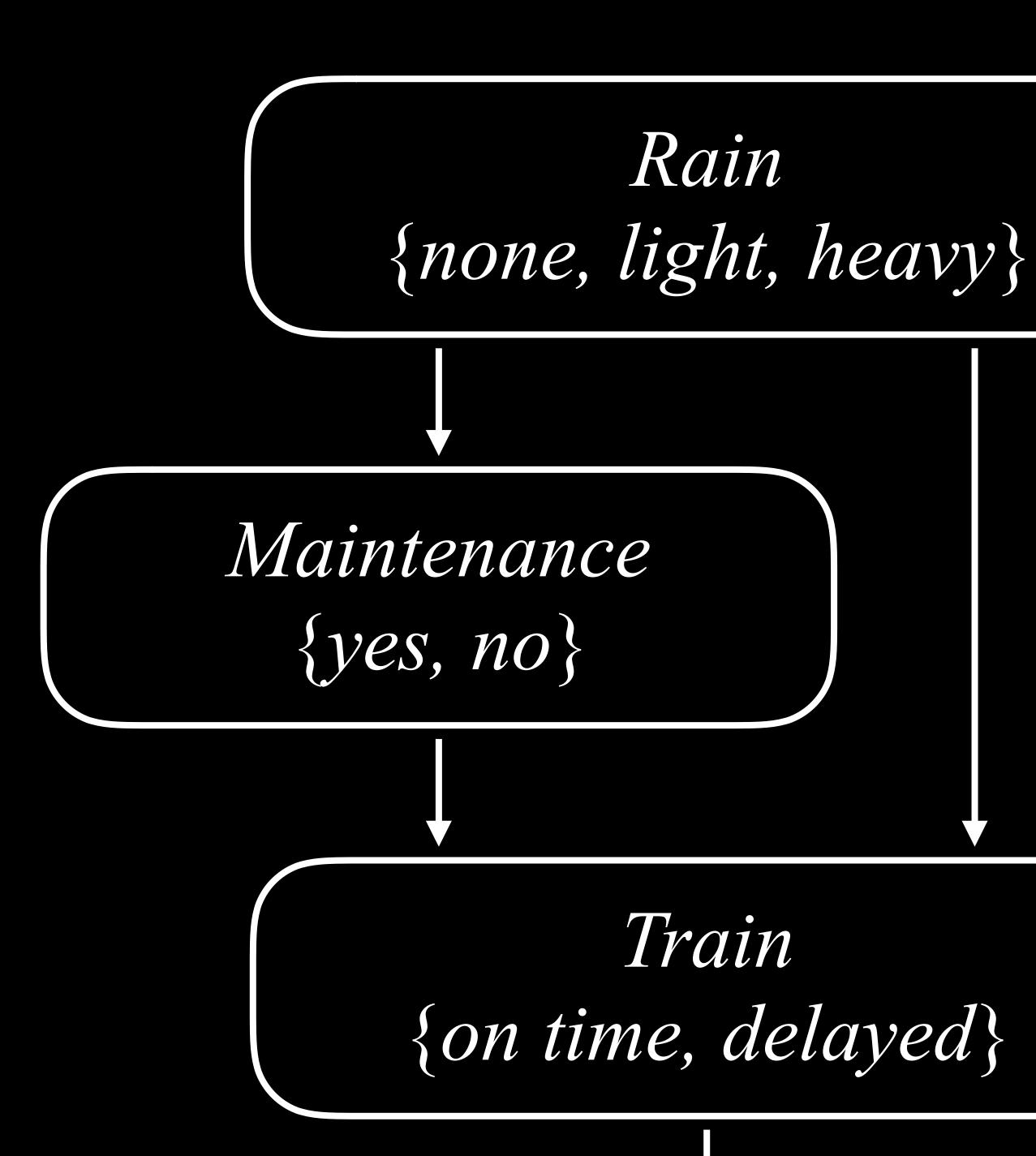


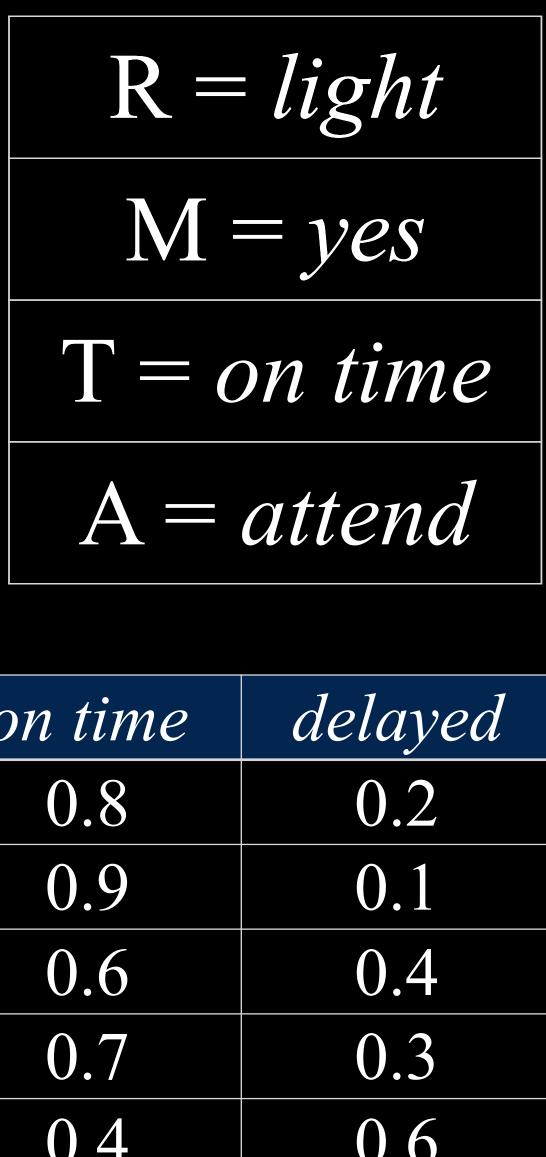
R	M	on time	delaye
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5



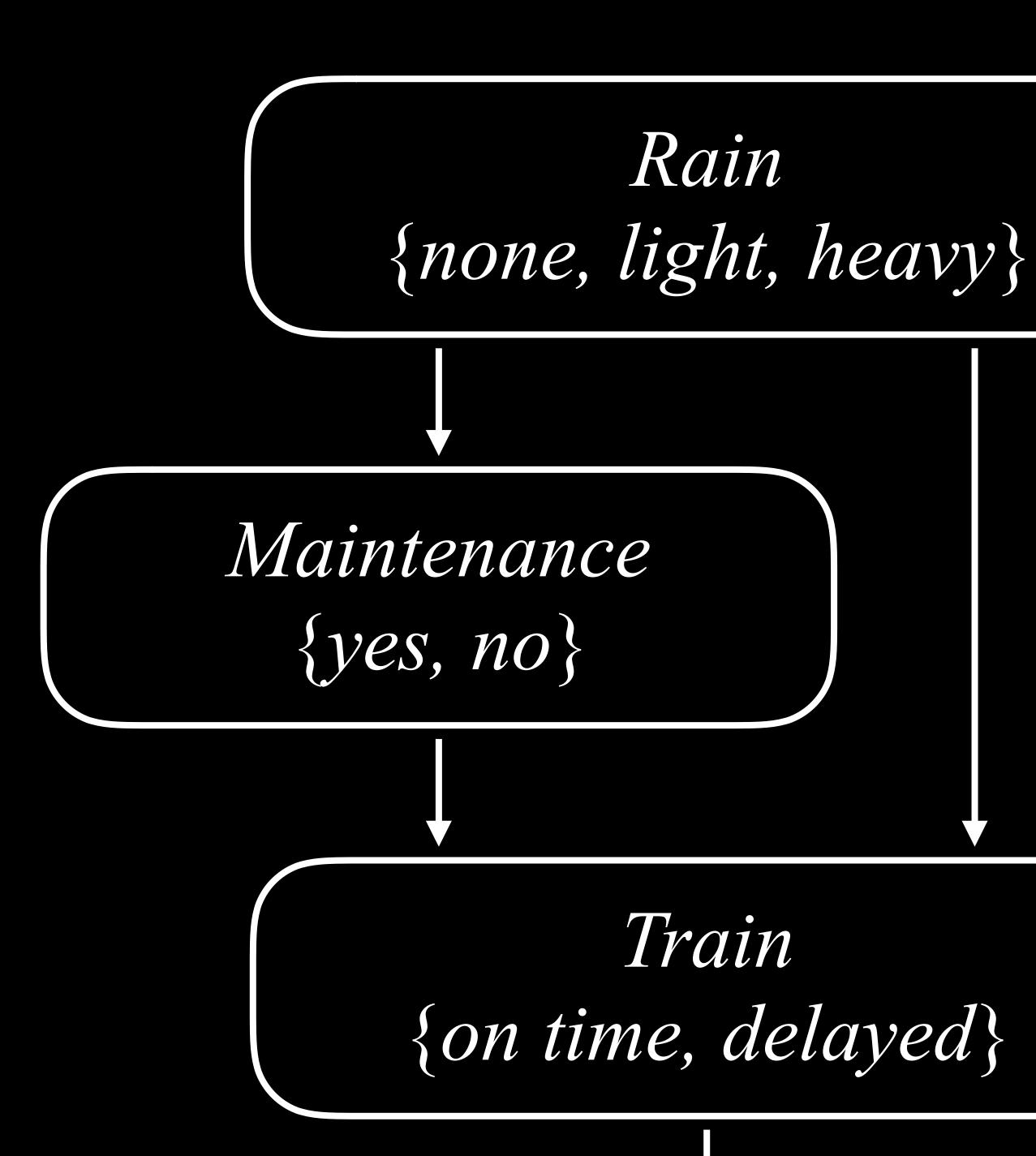


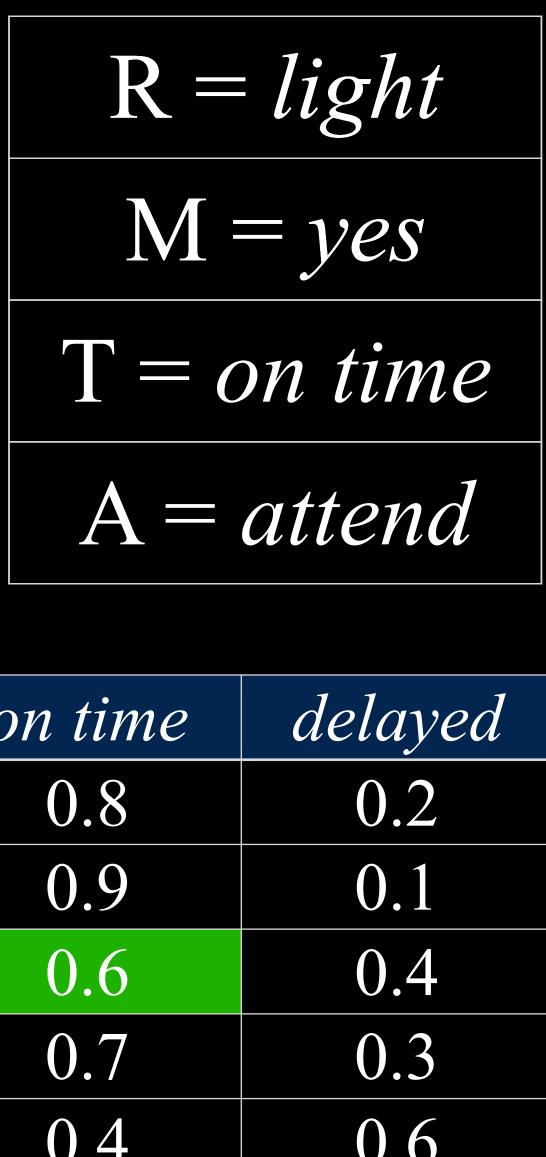
<u>T</u>	attend	miss
on time	0.9	0.1
delayed	0.6	0.4





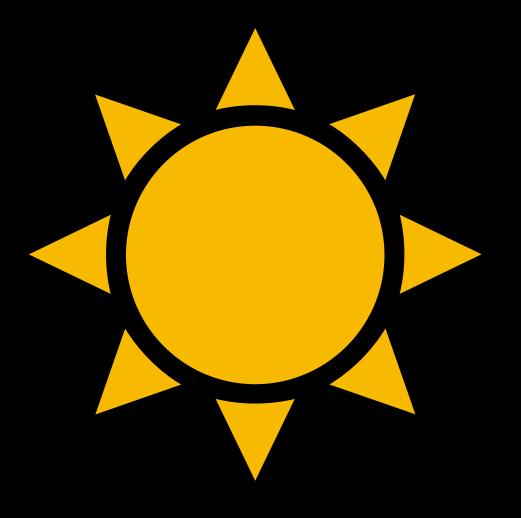
R	M	on time	delaye
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5





R	M	on time	delaye
none	yes	0.8	0.2
none	no	0.9	0.1
light	yes	0.6	0.4
light	no	0.7	0.3
heavy	yes	0.4	0.6
heavy	no	0.5	0.5

Uncertainty over Time



Xt: Weather at time t

Markov assumption

the assumption that the current state depends on only a finite fixed number of previous states

Markov Chain

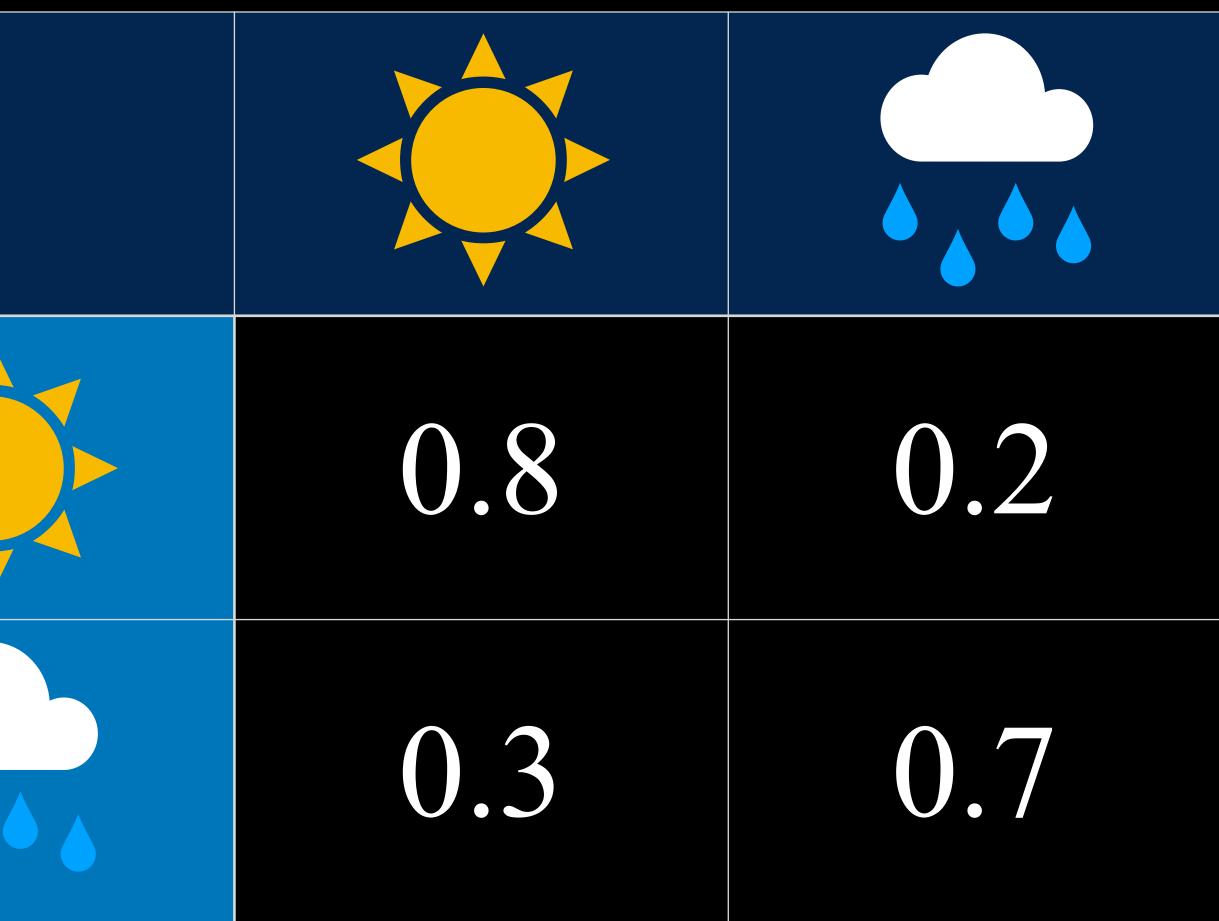
Markov chain

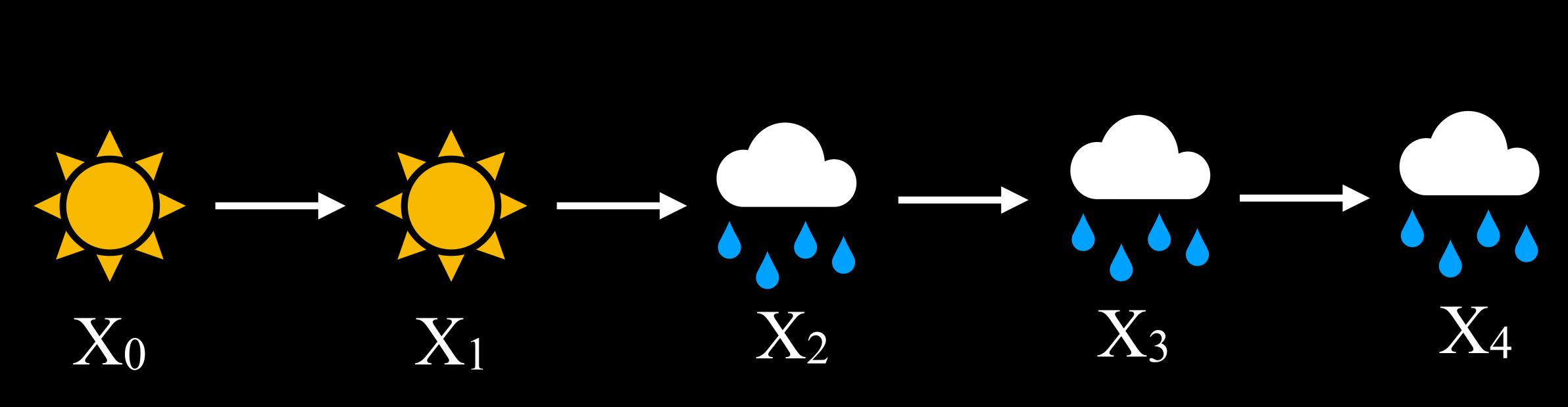
a sequence of random variables where the distribution of each variable follows the Markov assumption

Transition Mode

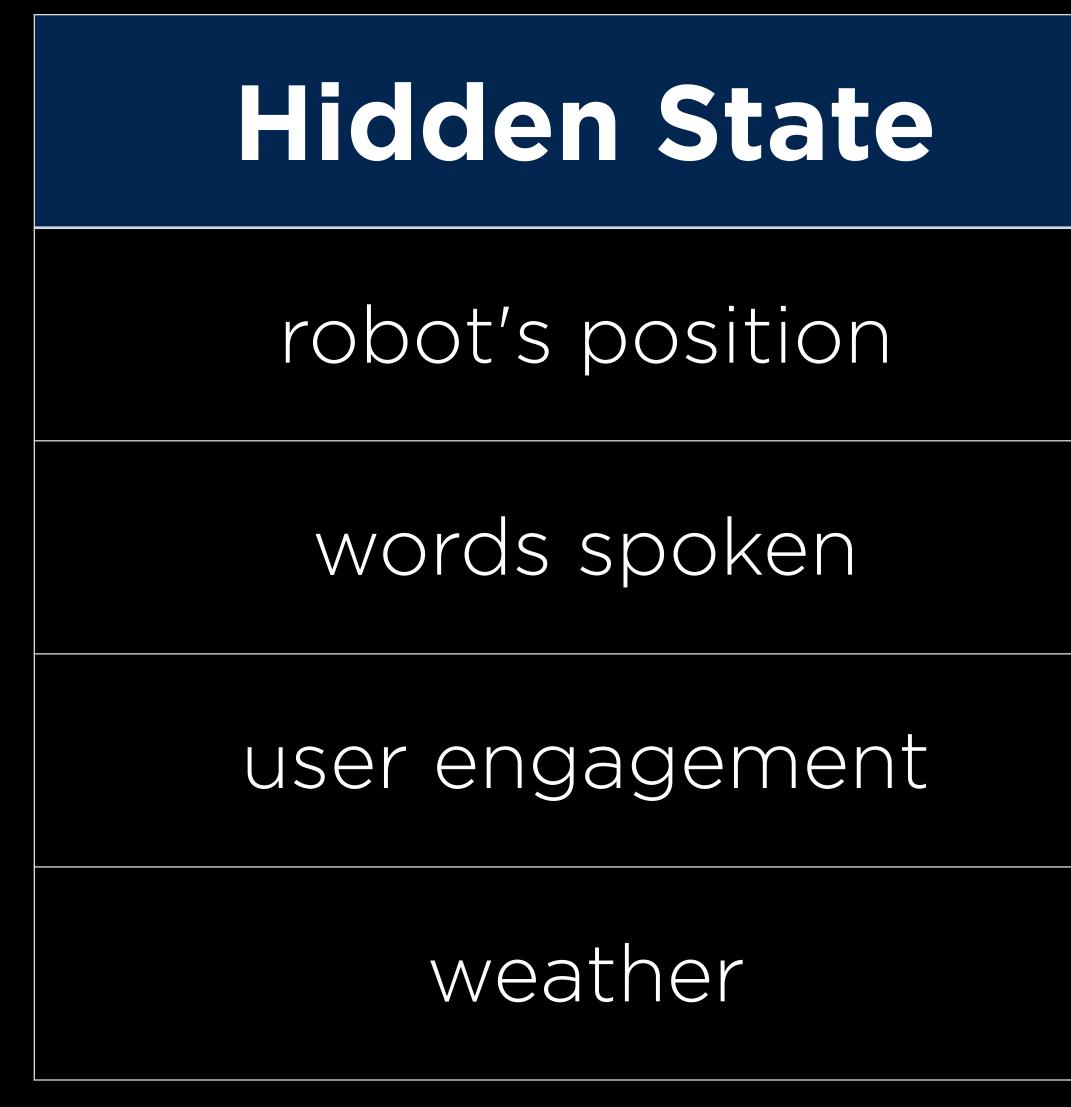
Today (X_t)

Tomorrow (X_{t+1})





Sensor Models



Observation
robot's sensor data
audio waveforms
website or app analytics
umbrella

Hidden Markov Models

Hidden Markov Model

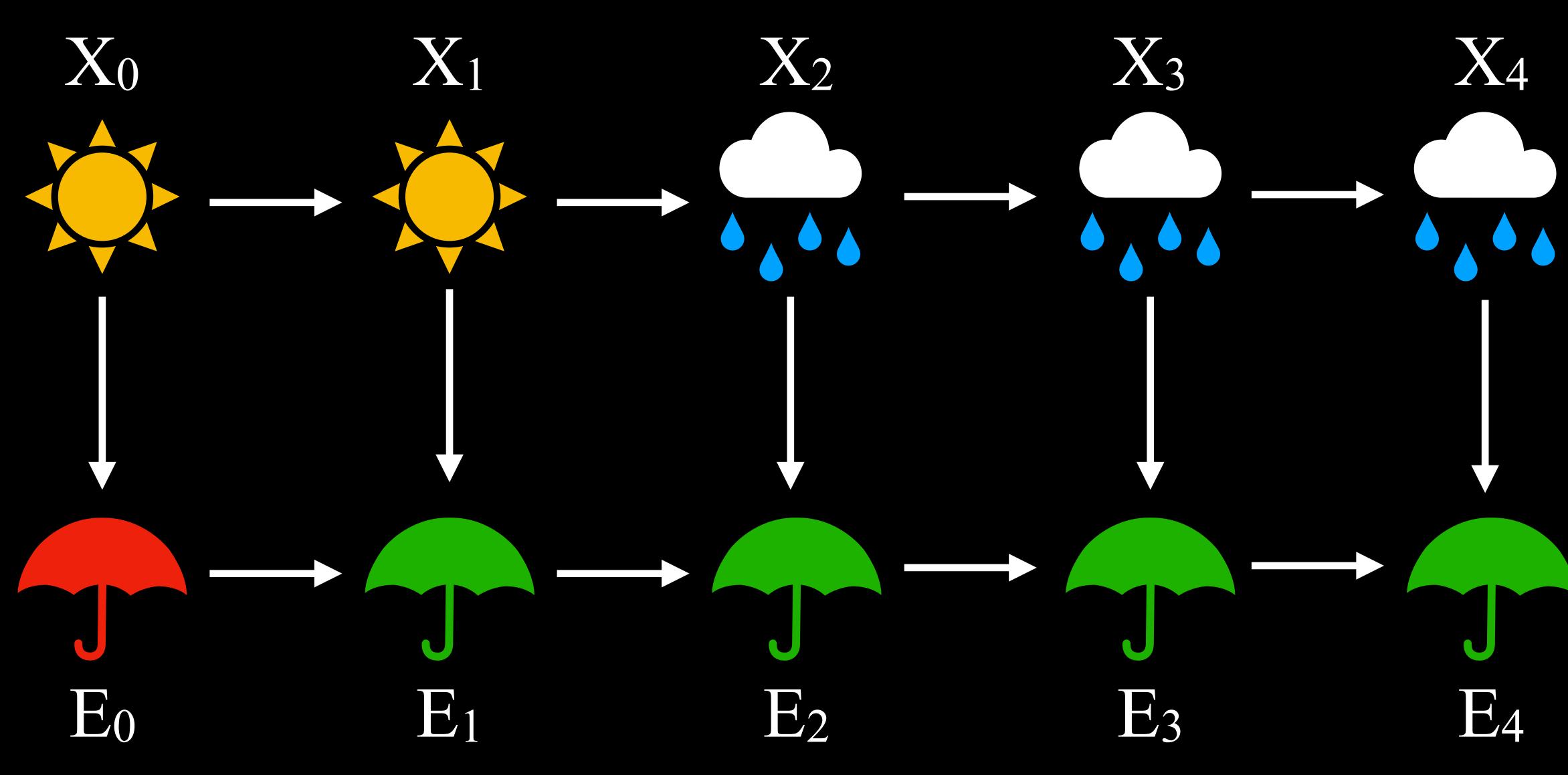
a Markov model for a system with hidden states that generate some observed event

Sensor Model

State (X_t)

Observation (E_t)

sensor Markov assumption the assumption that the evidence variable depends only the corresponding state



Task	
filtering	given ok calculat
prediction	given ob calculat
smoothing	given ob calcul
most likely explanation	given ob calculate

Definition

oservations from start until now, te distribution for **current** state

oservations from start until now, te distribution for a **future** state

oservations from start until now, late distribution for **past** state

oservations from start until now, e most likely **sequence** of states

Uncertainty

Introduction to Artificial Intelligence with Python