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Optimization



optimization

CchoosIiNg the pest option from a set of
options



local search

search algoritnms that maintain a single
Nnode and searches py moving to a
nelighboring node
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Hill Climbing




































Hill Climbing

function HLL -CLIMB (problen):
current= Initial state oforoblem
repeat:
neighbor= highest valued neighbor otirrent
If neighbornot better thakurrent
returrcurrent
current= neighbor



Ccost: 1/
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global maximum



local maxima




global minimum
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Hill Climbing Variants

Variant

Definition

Steepest-ascent

choose the highest-valued neighbor

stochastic

choose randomly from higher-valued
Nnelighbors

first-choice

choose the first higher-valued neighbor

random-restart

conduct hill climbing multiple times

local beam search

chooses the k highest-valued neighbors




Simulated Annealing



























Simulated Annealing

e Farly on, higher "temperature”: more likely to accept
nelighbors that are worse than current state

e | ater on, lower "temperature”: less likely to accept
neighbors that are worse than current state



Simulated Annealing

function SMULATED -ANNEALING(problem max:

current= Initial state ofproblem
fort = 1 tomax

T = TEMPERATURHK?)

neighbor= random neighbor afurrent

I E = how much bettemeighboris thancurrent

If 1 E> O:

current= neighbor

with probabilityeE/’T setcurrent= neighbor

returncurrent



Traveling Salesman Problem
























Linear Programming



Linear Programming

e MiNniMize a cost function cix1 + X2 + ... + GXn

e \With constraints of form axi+axs+ ... +axn "' b
or of formaixz1+ aXz+ ... +axn=D0

e \With bounds for each variable | " x; " uj



Linear Programming Example

e WO IT

550/hour to run, Xz

achines X7 and Xo. X7 costs S

costs ¢

580/hour to run. Goal is to minimize cost.

e X7 requires 5 units of labor per hour. X> reguires 2
units of labor per hour. Total of 20 units of labor to

spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50X, + 80X,

e X7 requires 5 units of labor per hour. X> requires 2
units of labor per hour. Total of 20 units of labor to
spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

Constraint: 10X, + 12X, = 90



Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

Constraint: (—10x%)) + (—12%,) = — 90



Linear Programming Algorithms

e SIMmplex

e INterior-Point



Constraint Satisfaction







Taking classes:

Student;




Xxam slots:

Taking classes:

Student;


































Constraint Satisfaction Problem

e Set of variables {X 1, Xz, ..., X}
e Set of domains for each variable {D1, Dy, ..., Di}

e Set of constraints C
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Variables

10, 2), (1, 1),

(1, 2), (2, 0), ...}

Domains

{11 21 31 41

5,6, 7,8, 9}

for each variable

Constraints

{0,2)#(1,1) 4

(1, 2) # (2, 0), ...)



Variables

A
{A,B,C D,E F, G}
o

Q G for each variapble
\ / \ Constraints
G { A#B, A#C, B#C, B#D, B#E, CHE,

e C#F, D#E, E#F, E#G, F#G}

C_ .
\ Domains

{ Monday TuesdayWednesday




hard constraints

constraints that must be satisfied In a
correct solution



soft constraints

constraints that express some notion of
which solutions are preferred over others






unary constraint

constraint involving only one variable



unary constraint

{A# Monday



binary constraint

constraint Involving two variables



binary constraint
{A#B)



hode consistency

when all the values in a variable’'s domain
satisty the variable's unary constraints
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arc consistency

when all the values in a variable's domain
satisty the variable's binary constraints



arc consistency

To make X arc-consistent with respect to ',
remove elements from X's domain until every
choice for X has a possible choice for Y
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Arc Consistency

function REVISE(csp, X, Y.
revised= false
forx in X.domain
If noy In Y.domainsatisfies constraint foiX( Y):
delete from X.domain
revisee true
returnrevised



Arc Consistency

function AC-3€sp:
gueue= all arcs Incsp
while queuenon-empty:
(X, Y) = DEQUEUHQueu¢
If REVISE(csp X, Y):
If size oX.domain== 0:
returmalse
for eacd In X.neighbors {Y}
RQUEUH queue (Z, X))
returntrue
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Search Problems

e INnitial state

e actions

e transition model
e goal test

e path cost function



CSPs as Search Problems

* Nitial state: empty assignment (NO variaples)

e actions: add a {variable=valug to assignment

e transition model: shows how adding an assignment
changes the assignment

e goal test: check if all variables assigned and
constraints all satisfied

e path cost function: all paths have same cost



Backtracking Search



Backtracking Search

function BACKTRACK(assignmentcsp:
If assignmentomplete: returassignment
var = SELECT-UNASSIGNEDV AR(assignmentcsp
forvaluein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
resulte BACKTRACK (assignmentcsp
Ifresult# failure: returnresult
remove {var =valug from assignment
returnfailure
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Inference
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maintaining arc-consistency

algorithm tor enforcing arc-consistency
every time we make a new assignment



maintaining arc-consistency

When we make a new assignment to X, calls
AC-3, starting with a gueue of all arcs (Y, X)
where Y IS a neighbor of X



function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug andinferencedrom assignment
returnfailure




function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure




function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure




SELECT-UNASSIGNED-VAR

e minimum remaining values (MRV) heuristic: select
the variaple that has the smallest domain

e degree heuristic: select the variaple that has the
Nighest degree
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function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure




function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure




DOMAIN-VALUES

¢ least-constraining values heuristic: return variaples in
order by numiber of choices that are ruled out for
neighboring variables

e try least-constraining values first
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