INntroduction to

Artificial Intelligence
with Python

Optimization

optimization

CchoosIiNg the pest option from a set of
options

local search

search algoritnms that maintain a single
Nnode and searches py moving to a
nelighboring node

| (e
LI
HEENIIEEEE
Bl O
LI

state-space landscape

global maximum

opjective
function

global minimum

COSt
function

current state

neighbors

Hill Climbing

Hill Climbing

function HLL -CLIMB (problen):
current= Initial state oforoblem
repeat:
neighbor= highest valued neighbor otirrent
If neighbornot better thakurrent
returrcurrent
current= neighbor

Ccost: 1/

S I I
S O O O
S O O O
LI |
LI

| HRH | [
S O
PPl R
o | HHR
Il s [H

| (e
LI
HEENIIEEEE
Bl O
LI

ST

L (]
LI
HEENIIEEN
| —H
LI

T[T Tel
EEC= RN
EEERIEEE
e H
T TTTA T

ost: 11

EEEEEEEEE
L
HEEIIEEEN.
BE S el O W e - |
LI

Cost: 9

S L. I
LI
R
Bl N e - |
LI

global maximum

local maxima

global minimum

local minima

flat local maximum

shoulder

Hill Climbing Variants

Variant

Definition

Steepest-ascent

choose the highest-valued neighbor

stochastic

choose randomly from higher-valued
Nnelighbors

first-choice

choose the first higher-valued neighbor

random-restart

conduct hill climbing multiple times

local beam search

chooses the k highest-valued neighbors

Simulated Annealing

Simulated Annealing

e Farly on, higher "temperature”: more likely to accept
nelighbors that are worse than current state

e | ater on, lower "temperature”: less likely to accept
neighbors that are worse than current state

Simulated Annealing

function SMULATED -ANNEALING(problem max:

current= Initial state ofproblem
fort = 1 tomax

T = TEMPERATURHK?)

neighbor= random neighbor afurrent

I E = how much bettemeighboris thancurrent

If 1 E> O:

current= neighbor

with probabilityeE/’T setcurrent= neighbor

returncurrent

Traveling Salesman Problem

Linear Programming

Linear Programming

e MiNniMize a cost function cix1 + X2 + ... + GXn

e \With constraints of form axi+axs+ ... +axn "' b
or of formaixz1+ aXz+ ... +axn=D0

e \With bounds for each variable | " x; " uj

Linear Programming Example

e WO IT

550/hour to run, Xz

achines X7 and Xo. X7 costs S

costs ¢

580/hour to run. Goal is to minimize cost.

e X7 requires 5 units of labor per hour. X> reguires 2
units of labor per hour. Total of 20 units of labor to

spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50X, + 80X,

e X7 requires 5 units of labor per hour. X> requires 2
units of labor per hour. Total of 20 units of labor to
spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

Constraint: 10X, + 12X, = 90

Linear Programming Example

Cost Function: 50X, + 80X,

Constraint: 3X + 2%, < 20

Constraint: (—10x%)) + (—12%,) = — 90

Linear Programming Algorithms

e SIMmplex

e INterior-Point

Constraint Satisfaction

Taking classes:

Student;

Xxam slots:

Taking classes:

Student;

Constraint Satisfaction Problem

e Set of variables {X 1, Xz, ..., X}
e Set of domains for each variable {D1, Dy, ..., Di}

e Set of constraints C

0
o D
3 3
4]
/ o
9 D
9

Variables

10, 2), (1, 1),

(1, 2), (2, 0), ...}

Domains

{11 21 31 41

5,6, 7,8, 9}

for each variable

Constraints

{0,2)#(1,1) 4

(1, 2) # (2, 0), ...)

Variables

A
{A,B,C D,E F, G}
o

Q G for each variapble
\ / \ Constraints
G { A#B, A#C, B#C, B#D, B#E, CHE,

e C#F, D#E, E#F, E#G, F#G}

C_ .
\ Domains

{ Monday TuesdayWednesday

hard constraints

constraints that must be satisfied In a
correct solution

soft constraints

constraints that express some notion of
which solutions are preferred over others

unary constraint

constraint involving only one variable

unary constraint

{A# Monday

binary constraint

constraint Involving two variables

binary constraint
{A#B)

hode consistency

when all the values in a variable’'s domain
satisty the variable's unary constraints

A

B

{Mon, Tue Wed {Mon, Tue Wedg

{A# Mon, B# Tue B # Mon, A # B}

A

B

{Mon, Tue Wed {Mon, Tue Wedg

{A# Mon, B# Tue B # Mon, A # B}

B

{Tue Wed {Mon, Tue Wedg

{A# Mon, B# Tue B # Mon, A # B}

B

{Tue Wed {Mon, Tue Wedg

{A# Mon, B # Tue B # Mon, A # B}

{Tug Wed {Mon, Wed

{A# Mon, B # Tue B # Mon, A # B}

{Tug Wed {Mon, Wed

{A# Mon, B# Tue B # Mon, A # B}

{Tue Wed

{A# Mon, B# Tue B # Mon, A # B}

{Tue Wed

{A# Mon, B# Tue B # Mon, A # B}

arc consistency

when all the values in a variable's domain
satisty the variable's binary constraints

arc consistency

To make X arc-consistent with respect to ',
remove elements from X's domain until every
choice for X has a possible choice for Y

{Tue Wed

{A# Mon, B# Tue B # Mon, A # B}

{Tue Wed

{A# Mon, B# Tue B # Mon, A # B}

{A# Mon, B# Tue B # Mon, A # B}

{A# Mon, B# Tue B # Mon, A # B}

Arc Consistency

function REVISE(csp, X, Y.
revised= false
forx in X.domain
If noy In Y.domainsatisfies constraint foiX(Y):
delete from X.domain
revisee true
returnrevised

Arc Consistency

function AC-3€sp:
gueue= all arcs Incsp
while queuenon-empty:
(X, Y) = DEQUEUHQueu¢
If REVISE(csp X, Y):
If size oX.domain== 0:
returmalse
for eacd In X.neighbors {Y}
RQUEUH queue (Z, X))
returntrue

{Mon, Tue Wed

A

{Mon, Tue Wed G I e {Mon, Tue Wed
{Mon, Tue Wedg Q G { Mon, Tug Wed

NVZ\

{Mon, Tue Wed G @ {Mon, Tue Wed

Search Problems

e INnitial state

e actions

e transition model
e goal test

e path cost function

CSPs as Search Problems

* Nitial state: empty assignment (NO variaples)

e actions: add a {variable=valug to assignment

e transition model: shows how adding an assignment
changes the assignment

e goal test: check if all variables assigned and
constraints all satisfied

e path cost function: all paths have same cost

Backtracking Search

Backtracking Search

function BACKTRACK(assignmentcsp:
If assignmentomplete: returassignment
var = SELECT-UNASSIGNEDV AR(assignmentcsp
forvaluein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
resulte BACKTRACK (assignmentcsp
Ifresult# failure: returnresult
remove {var =valug from assignment
returnfailure

{Mon, Tue, Wed}

A

{Mon, Tue Wed G I e {Mon, Tue Wed
{Mon, Tug Weg Q G IMon, Tue Wed

NVZ\

{Mon, Tue Wed G @ {Mon, Tue Wed

/\

{Mon, Tue Wed G e {Mon, Tue Wed

/ \

{Mon, Tue Wed Q G\{I\/Ion Tue Wed

Nz~

{Mon, Tue Wed G

{I\/Ion, Tue Wed

\

Mon G e {Mon, Tue Wed

/ \

{Mon, Tug Weg Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

Mon

A

N

Mon G_G {Mon, Tue Wed
{Mon, Tug We¢g Q G {Mon, Tug We¢g

NVZ\

{Mon, Tue Wed G @ {Mon, Tue Wed

\

Tue e G {Mon, Tue Wed

/ \

{Mon, Tug Weg Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue G e {Mon, Tue Wed

/ \

Mon Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

Mon

A

AN
Tue e

e {Mon, Tue Wed

Mon Q G {Mon, Tue Wed

/\

Mon G

{I\/Ion, Tue Wed

Mon

A

AN
Tue e

e {Mon, Tue Wed

Mon Q G {Mon, Tue Wed

/\

on @———

{I\/Ion, Tue Wed

Mon

A

AN
Tue e

e {Mon, Tue Wed

Mon Q G {Mon, Tue Wed

/\

Tue G

{I\/Ion, Tue Wed

Mon

0

Tue G_e {Mon, Tue Wed

Mon / G {Mon, Tue Wed
Tue

{I\/Ion, Tue Wed

Mon

e {Mon, Tue Wed

/

Mon Q

{Mon Tue Wed

Wed {I\/Ion, Tue Wed

° \Yile]g
Tue e/_\e Mon

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

Mon

A

Tue G_G Mon

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

° \Yile]g
Tue e/_\e Tue

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

°I\/Ion
/ \G Tue

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

° \Vilelp
Tue G/_\e Wed

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

° \Vilelp
Tue G/_\e Wed

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

Mon

e {Mon, Tue Wed

/

Mon Q

{Mon Tue Wed

Wed {I\/Ion, Tue Wed

\

Tue G e {Mon, Tue Wed

/ \

Mon Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue e G {Mon, Tue Wed

/ \

{Mon, Tug Weg Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue G e {Mon, Tue Wed

/ \

Tue Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

e {Mon, Tue Wed

\

Tue Q G {Mon, Tue Wed

/

Tue e

{Mon, Tue Wed G {I\/Ion, Tue Wed

AN

e {Mon, Tue Wed

\
v G\

@ {Mon, Tue Wed

{Mon, Tue Wed

/\

Weg
Tue G e {Mon, Tue We

\

G {Mon, Tue Wed

{I\/Ion, Tue Wed

aN

Tue G_G Mon

e \ O
N2\

Mon G @ {Mon, Tue Wed

Mon

A

Tue G/_ e Mon

e \ O
N2\

Mon G @ {Mon, Tue Wed

aN

Tue G_G Tue

e \ O
N2\

Mon G @ {Mon, Tue Wed

aN

Tue e e Tue

e \ O
N2\

Mon G @ {Mon, Tue Wed

aN

Tue G_e Wed

e \ O
N2\

Mon G @ {Mon, Tue Wed

Mon

<

Tue G/_e Wed

\

-/
We Q

G Mon

\

\Yi[elg

@ {Mon, Tue Wed

0

Tue G_e Wed

e \ / '
\

Mon G @ {Mon, Tue Wed

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ {Mon, Tue Wed

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ \Y[e]g

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ Tue

Mon

<

Tue G/_e Wed

G Tue

\

\

-/
We Q

/

@ Tue

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ Wed

Inference

\

Tue e G {Mon, Tue Wed

/ \

{Mon, Tug Weg Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue G e {Mon, Tue Wed

/ \

Mon Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue G e {Mon, Tue Wed

/e
NV \

{Mon, Tue Wed G {I\/Ion, Tue Wed

\

Tue e G {Mon, Tue Wed

/ \

{Mon, Tug Weg Q G {Mon, Tue Wed

/

{Mon, Tue Wed G {I\/Ion, Tue Wed

{Mon, Tue Wed Q

N\ /G\

@ {Mon, Tue Wed

{Mon, Tue Wed

{Mon, Tue Wed Q

N\ /G\

@ {Mon, Tue Wed

{Mon, Tue Wed

° \Yile]g
Tue e/_\e {Wed

\

G {Mon, Tue Wed

L\

@ {Mon, Tue Wed

° \Yile]g
Tue e/_\e {Wed

\

° \Yile]g
Tue e/_\e {Wed

\

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ Wed

maintaining arc-consistency

algorithm tor enforcing arc-consistency
every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls
AC-3, starting with a gueue of all arcs (Y, X)
where Y IS a neighbor of X

function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug andinferencedrom assignment
returnfailure

function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure

function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure

SELECT-UNASSIGNED-VAR

e minimum remaining values (MRV) heuristic: select
the variaple that has the smallest domain

e degree heuristic: select the variaple that has the
Nighest degree

/G\{ Mon, Tue Wed

@ {Mon, Tue Wed

/G\{ Mon, Tue Wed

@ {Mon, Tue Wed

{Mon, Tue, Wed}

A

{Mon, Tue Wed G I e {Mon, Tue Wed
{Mon, Tug Weg Q G IMon, Tue Wed

NVZ\

{Mon, Tue Wed G @ {Mon, Tue Wed

{Mon, Tue, Wed}

A

{Mon, Tue Wed G E— e {Mon, Tue Wed
{Mon, Tue Weg Q G {Mon, Tue Wed

NVZ\

{Mon, Tue Wed G @ {Mon, Tue Wed

function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure

function BACKTRACK(assignmentcsp:
If assignmentomplete: returssignment
var = SELECT-UNASSIGNED-V AR(assignmentcsp
for valuein DOMAIN-V ALUES(var, assignmentcsp:
If valueconsistent witlassignment
add yar = valug to assignment
Inferences INFERENCHEassignmentcsp
Ifinferencest failure: addinferencedo assignment
result BACKTRACK (assignmentcsp
Ifresult# failure: returnresult

remove {var = valug and inferencedrom assignment
returnfailure

DOMAIN-VALUES

¢ least-constraining values heuristic: return variaples in
order by numiber of choices that are ruled out for
neighboring variables

e try least-constraining values first

{Mon, Tue Wed Q

N\

{Mon, Tue Wed G

Mon

A

4

{Mon, Tue Wed G_e Wed

/

{Mon, Tue Wed Q

N\

{Mon, Tue Wed G

Mon

<

Tue G/_e Wed

\

-/
We Q

G Tue

\

\Yi[elg

@ Wed

/ "\

50X, + 80X, /e 2

/ \

||||\|\|m|\ Gl -
G,

| ocal L Inear Constraint
Searcn Programming Satistaction

Optimization

INntroduction to

Artificial Intelligence
with Python

