Introduction to
 Artificial Intelligence
 with Python

Optimization

optimization

choosing the best option from a set of options

local search

search algorithms that maintain a single node and searches by moving to a neighboring node

Cost: 17

state-space landscape

global maximum

current state

neighbors

Hill Climbing

Hill Climbing

function HILL-CLIMB(problem): current = initial state of problem repeat:
neighbor $=$ highest valued neighbor of current if neighbor not better than current: return current
current $=$ neighbor

Cost: 17

			\square				A	
	A							
ก								\square
					A			

Cost: 17

		$\stackrel{9}{\square}$	$\stackrel{+}{\square}$	$\stackrel{+}{\square}$		A	
	ก		$\stackrel{9}{1}$				
							9
A						9	$\stackrel{+}{\square}$
					ก		9

Cost: 17

Cost: 15

Cost: 13

Cost: 11

Cost: 9

global maximum

local maxima

global minimum

local minima

flat local maximum

shoulder

Hill Climbing Variants

Variant	Definition
steepest-ascent	choose the highest-valued neighbor
stochastic	choose randomly from higher-valued neighbors
first-choice	choose the first higher-valued neighbor
random-restart	conduct hill climbing multiple times
local beam search	chooses the k highest-valued neighbors

Simulated Annealing

Simulated Annealing

- Early on, higher "temperature": more likely to accept neighbors that are worse than current state
- Later on, lower "temperature": less likely to accept neighbors that are worse than current state

Simulated Annealing

function SIMULATED-ANNEALING(problem, max): current $=$ initial state of problem
for $t=1$ to \max :
$T=\operatorname{TEMPERATURE}(t)$
neighbor $=$ random neighbor of current
$\Delta E=$ how much better neighbor is than current if $\Delta E>0$:
current $=$ neighbor
with probability $e^{A E / T}$ set current $=$ neighbor return current

Traveling Salesman Problem
0

Linear Programming

Linear Programming

- Minimize a cost function $c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
- With constraints of form $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq b$ or of form $\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}$
- With bounds for each variable $\mathrm{l}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{u}_{\mathrm{i}}$

Linear Programming Example

- Two machines X_{1} and X_{2}. X_{1} costs $\$ 50 /$ hour to run, X_{2} costs $\$ 80 /$ hour to run. Goal is to minimize cost.
- X_{1} requires 5 units of labor per hour. X_{2} requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X_{1} produces 10 units of output per hour. X_{2} produces 12 units of output per hour. Company needs 90 units of output.

Linear Programming Example

Cost Function: $\quad 50 x_{1}+80 x_{2}$

- X_{1} requires 5 units of labor per hour. X_{2} requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X_{1} produces 10 units of output per hour. X_{2} produces 12 units of output per hour. Company needs 90 units of output.

Linear Programming Example

Cost Function: $50 x_{1}+80 x_{2}$

Constraint:

$$
5 x_{1}+2 x_{2} \leq 20
$$

- X_{1} produces 10 units of output per hour. X_{2} produces 12 units of output per hour. Company needs 90 units of output.

Linear Programming Example

Cost Function:

$50 x_{1}+80 x_{2}$

Constraint:

$$
5 x_{1}+2 x_{2} \leq 20
$$

Constraint:

$$
10 x_{1}+12 x_{2} \geq 90
$$

Linear Programming Example

Cost Function $50 x_{1}+80 x_{2}$

Constraint:

$$
5 x_{1}+2 x_{2} \leq 20
$$

Constraint:

$$
\left(-10 x_{1}\right)+\left(-12 x_{2}\right) \leq-90
$$

Linear Programming Algorithms

- Simplex
- Interior-Point

Constraint Satisfaction

Student:

Student:
Taking classes:

Student:
Taking classes:

Monday

Tuesday

Wednesday

(A)

(A)

©

©

©

Constraint Satisfaction Problem

- Set of variables $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- Set of domains for each variable $\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{n}}\right\}$
- Set of constraints C

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Variables

$$
\{(0,2),(1,1),(1,2),(2,0), \ldots\}
$$

Domains

$\{1,2,3,4,5,6,7,8,9\}$ for each variable

Constraints

$$
\{(0,2) \neq(1,1) \neq(1,2) \neq(2,0), \ldots\}
$$

Variables

$$
\{A, B, C, D, E, F, G\}
$$

Domains

\{Monday, Tuesday, Wednesday\}

for each variable

Constraints

$\{A \neq B, A \neq C, B \neq C, B \neq D, B \neq E, C \neq E$,

$$
C \neq F, D \neq E, E \neq F, E \neq G, F \neq G\}
$$

hard constraints

constraints that must be satisfied in a

 correct solution
soft constraints

constraints that express some notion of which solutions are preferred over others

unary constraint

 constraint involving only one variable
unary constraint

$\{A \neq$ Monday $\}$

binary constraint

constraint involving two variables

binary constraint

$\{A \neq B\}$

node consistency

when all the values in a variable's domain satisfy the variable's unary constraints

A) B

$\{$ Mon, Tue, Wed $\} \quad\{$ Mon, Tue, Wed $\}$
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

A -B

$\{$ Mon, Tue, Wed $\} \quad\{$ Mon, Tue, Wed $\}$

$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\} \{Mon, Tue, Wed\}
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
\{Mon, Tue, Wed\}
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
\{Mon, Wed\}
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
\{Mon, Wed $\}$
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
$\{$ Wed $\}$
$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
$\{$ Wed $\}$

$\{A \neq \operatorname{Mon}, B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

arc consistency

when all the values in a variable's domain satisfy the variable's binary constraints

arc consistency

To make X arc-consistent with respect to Y, remove elements from X^{\prime} s domain until every choice for X has a possible choice for Y

\{Tue, Wed\}
$\{$ Wed $\}$

$\{A \neq \operatorname{Mon}, B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

\{Tue, Wed\}
$\{$ Wed $\}$

$\{A \neq \operatorname{Mon}, B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

$\{A \neq$ Mon, $B \neq$ Tue, $B \neq$ Mon, $A \neq B\}$

Arc Consistency

function REVISE(csp, X, Y):
revised = false
for x in X.domain:
if no y in Y.domain satisfies constraint for (X, Y): delete x from X.domain
revised $=$ true
return revised

Arc Consistency

function AC-3(csp):
queue = all arcs in $c s p$
while queue non-empty:
(X, Y) = DEQUEUE(queue)
if REVISE(csp, X, Y):
if size of X.domain $==0$:
return false
for each Z in X.neighbors - $\{Y\}$:
ENQUEUE(queue, $(Z, X))$
return true

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

CSPs as Search Problems

- initial state: empty assignment (no variables)
- actions: add a \{variable = value $\}$ to assignment
- transition model: shows how adding an assignment changes the assignment
- goal test: check if all variables assigned and constraints all satisfied
- path cost function: all paths have same cost

Backtracking Search

Backtracking Search

function BACKTRACK(assignment, csp):
if assignment complete: return assignment
var $=$ SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=$ value $\}$ to assignment
result $=$ BACKTRACK (assignment, csp)
if result \neq failure: return result
remove $\{v a r=$ value $\}$ from assignment return failure

Inference

maintaining arc-consistency

algorithm for enforcing arc-consistency every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls AC-3, starting with a queue of all $\operatorname{arcs}(Y, X)$ where Y is a neighbor of X
function BACKTRACK(assignment, csp):
if assignment complete: return assignment $v a r=$ SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=v a l u e\}$ to assignment inferences $=$ INFERENCE (assignment, csp) if inferences \neq failure: add inferences to assignment result = BACKTRACK(assignment, csp) if result \neq failure: return result remove $\{v a r=v a l u e\}$ and inferences from assignment return failure
function BACKTRACK(assignment, csp):
if assignment complete: return assignment var = SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=v a l u e\}$ to assignment inferences $=$ INFERENCE $($ assignment, csp) if inferences \neq failure: add inferences to assignment result = BACKTRACK(assignment, csp) if result \neq failure: return result remove $\{v a r=v a l u e\}$ and inferences from assignment return failure
function BACKTRACK(assignment, csp):
if assignment complete: return assignment var = SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=v a l u e\}$ to assignment inferences $=$ INFERENCE(assignment, csp) if inferences \neq failure: add inferences to assignment result = BACKTRACK(assignment, csp) if result \neq failure: return result remove $\{v a r=v a l u e\}$ and inferences from assignment return failure

SELECT-UNASSIGNED-VAR

- minimum remaining values (MRV) heuristic: select the variable that has the smallest domain
- degree heuristic: select the variable that has the highest degree

function BACKTRACK(assignment, csp):
if assignment complete: return assignment var = SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=v a l u e\}$ to assignment inferences $=$ INFERENCE(assignment, csp) if inferences \neq failure: add inferences to assignment result = BACKTRACK(assignment, csp) if result \neq failure: return result remove $\{v a r=v a l u e\}$ and inferences from assignment return failure
function BACKTRACK(assignment, csp):
if assignment complete: return assignment var = SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp):
if value consistent with assignment:
add $\{v a r=v a l u e\}$ to assignment inferences $=$ INFERENCE(assignment, csp) if inferences \neq failure: add inferences to assignment result = BACKTRACK(assignment, csp) if result \neq failure: return result remove $\{v a r=v a l u e\}$ and inferences from assignment return failure

DOMAIN-VALUES

- least-constraining values heuristic: return variables in order by number of choices that are ruled out for neighboring variables
- try least-constraining values first

Problem Formulation

Optimization

Introduction to
 Artificial Intelligence
 with Python

