Introduction to Artificial Intelligence with Python

Optimization

optimization choosing the best option from a set of options

I Search

search algorithms that maintain a single node and searches by moving to a neighboring node

A			

			B

				B

state-space landscape

global maximum

cost function

gobal minimum

current state

neighbors

Hill Climbing

Hill Climbing

function HILL-CLIMB(*problem*): *current* = initial state of *problem* repeat: *neighbor* = highest valued neighbor of *current* if neighbor not better than current: return current *current* = *neighbor*

Global maximum

Ocal maxima

global minimum

oca minma

flat local maximum

shou der

Hill Climbing Variants

Variant	
steepest-ascent	choc
stochastic	choos
first-choice	choose
random-restart	CONC
local beam search	choose

Definition

ose the highest-valued neighbor

se randomly from higher-valued neighbors

e the first higher-valued neighbor

duct hill climbing multiple times

es the k highest-valued neighbors

Simulated Annealing

Simulated Annealing

- neighbors that are worse than current state
- neighbors that are worse than current state

Early on, higher "temperature": more likely to accept

Later on, lower "temperature": less likely to accept

Simulated Annealing function SIMULATED-ANNEALING(problem, max): *current* = initial state of *problem* for t = 1 to max: T = TEMPERATURE(t)*neighbor* = random neighbor of *current* $\Delta E =$ how much better *neighbor* is than *current* if $\Delta E > 0$: *current* = *neighbor* with probability $e^{\Delta E/T}$ set current = neighbor return current

Traveling Salesman Problem

Linear Programming

Linear Programming

- Minimize a cost function $c_1x_1 + c_2x_2 + ... + c_nx_n$
- With constraints of form $a_1x_1 + a_2x_2 + ... + a_nx_n \le b$ or of form $a_1x_1 + a_2x_2 + ... + a_nx_n = b$
- \bullet With bounds for each variable $l_i \leq x_i \leq u_i$

- costs \$80/hour to run. Goal is to minimize cost.
- X_1 requires 5 units of labor per hour. X_2 requires 2 spend.
- of output.

• Two machines X_1 and X_2 . X_1 costs \$50/hour to run, X_2

units of labor per hour. Total of 20 units of labor to

• X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units

Cost Function:

- X_1 requires 5 units of labor per hour. X_2 requires 2 spend.
- of output.

 $50x_1 + 80x_2$

units of labor per hour. Total of 20 units of labor to

• X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units

Cost Function: $50x_1$

Constraint: $5x_1$ -

 X₁ produces 10 units of output per hour. X₂ produces 12 units of output per hour. Company needs 90 units of output.

$5x_1 + 2x_2 \le 20$

Cost Function:

Constraint:

Constraint:

 $50x_1 + 80x_2$

$5x_1 + 2x_2 \le 20$

$10x_1 + 12x_2 \ge 90$

Cost Function:

Constraint:

Constraint:

 $50x_1 + 80x_2$

$5x_1 + 2x_2 \le 20$

$(-10x_1) + (-12x_2) \le -90$

Linear Programming Algorithms

- Simplex
- Interior-Point

Constraint Satisfaction

Student:

Student:

Taking classes:

Student:

Taking classes:

Exam slots:

Monday

Tuesday

Wednesday

Constraint Satisfaction Problem

- Set of variables $\{X_1, X_2, ..., X_n\}$
- \bullet Set of domains for each variable $\{D_1,\,D_2,\,...,\,D_n\}$
- Set of constraints C

 $\{ ., X_n \}$ variable $\{ D_1, D_2, ..., D_n \}$

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Variables $\{(0, 2), (1, 1), (1, 2), (2, 0), ...\}$

Domains {1, 2, 3, 4, 5, 6, 7, 8, 9} for each variable

Constraints

 $\{(0, 2) \neq (1, 1) \neq (1, 2) \neq (2, 0), ...\}$

Variables $\{A, B, C, D, E, F, G\}$

Domains

{*Monday, Tuesday, Wednesday*} for each variable

Constraints

 $\{A \neq B, A \neq C, B \neq C, B \neq D, B \neq E, C \neq E, C \neq E, C \neq F, D \neq E, E \neq F, E \neq G, F \neq G\}$

hard constraints constraints that must be satisfied in a

constraints that mus correct solution

soft constraints

constraints that express some notion of which solutions are preferred over others

unary constraint constraint involving only one variable

unary constraint

 $\{A \neq Monday\}$

binary constraint constraint involving two variables

binary constraint

 $\{A \neq B\}$

node consistency

satisfy the variable's unary constraints

when all the values in a variable's domain

arc consistency

when all the values in a variable's domain satisfy the variable's binary constraints

arc consistency

choice for X has a possible choice for Y

To make X arc-consistent with respect to Y, remove elements from X's domain until every

Arc Consistency

function REVISE(csp, X, Y): revised = false for x in X.domain: delete x from X.domain revised = true return revised

if no y in *Y.domain* satisfies constraint for (X, Y):

Arc Consistency function AC-3(csp): $queue = all \arcsin csp$ while queue non-empty: (X, Y) = DEQUEUE(queue)if REVISE(csp, X, Y):if size of X.domain == 0: return false for each Z in X.neighbors - $\{Y\}$: ENQUEUE(queue, (Z, X)) return true

$\{Mon, Tue, Wed\}$

{Mon, Tue, Wed}

D

{*Mon*, *Tue*, *Wed*}

С

F

A

Β

Ε

{*Mon*, *Tue*, *Wed*}

{*Mon, Tue, Wed*}

$(\mathbf{G}) \{Mon, Tue, Wed\}$

Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

CSPs as Search Problems

- initial state: empty assignment (no variables)
- actions: add a {variable = value} to assignment
- changes the assignment
- goal test: check if all variables assigned and constraints all satisfied
- path cost function: all paths have same cost

transition model: shows how adding an assignment

Backtracking Search

Backtracking Search function BACKTRACK(assignment, csp): if assignment complete: return assignment var = SELECT-UNASSIGNED-VAR(assignment, csp) for value in DOMAIN-VALUES(var, assignment, csp): if value consistent with assignment: add {var = value} to assignment result = BACKTRACK(assignment, csp) if *result* ≠ *failure*: return *result* remove {var = value} from assignment return failure

Β

$\{Mon, Tue, Wed\}$

{Mon, Tue, Wed}

D

Β

Ε

{*Mon*, *Tue*, *Wed*}

{Mon, Tue, Wed}

D

{Mon, Tue, Wed}

Mon

D

B

{Mon, Tue, Wed}

Mon

D

B

{Mon, Tue, Wed}

Tue

D

Β

{Mon, Tue, Wed}

Tue

D

Β

Inference

{Mon, Tue, Wed}

Tue

D

Β

{Mon, Tue, Wed}

Tue

D

Β

{Mon, Tue, Wed}

Tue

D

B

Tue

D

B

maintaining arc-consistency algorithm for enforcing arc-consistency every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls AC-3, starting with a queue of all arcs (Y, X) where Y is a neighbor of X

SELECT-UNASSIGNED-VAR

- the variable that has the smallest domain
- degree heuristic: select the variable that has the highest degree

• minimum remaining values (MRV) heuristic: select

$\{Mon, Wed\}$

{Mon, Tue, Wed}

Tue

D

B

$\{Mon, Wed\}$

{Mon, Tue, Wed}

Tue

D

B

Β

$\{Mon, Tue, Wed\}$

{Mon, Tue, Wed}

D

Β

Ε

$\{Mon, Tue, Wed\}$

{Mon, Tue, Wed}

D

DOMAIN-VALUES

neighboring variables

try least-constraining values first

least-constraining values heuristic: return variables in order by number of choices that are ruled out for

B

Ε

$\{Mon, Tue, Wed\}$

{Mon, Tue, Wed}

D

Β

Ε

{*Mon, Tue, Wed*}

{Mon, Tue, Wed}

D

Problem Formulation

50. $5x_{1}$ $(-10x_1) +$

Search

Inear Programming

Constraint Satisfaction

$$x_1 + 80x_2 + 2x_2 \le 20$$
$$(-12x_2) \le -90$$

Optimization

Introduction to Artificial Intelligence with Python