INntroduction to

Artificial Intelligence
with Python

Optimization

optimization

CchoosIiNg the pest option from a set of
options

local search

search algoritnms that maintain a single
Nnode and searches py moving to a
nelighboring node

| (e
LI
HEENIIEEEE
Bl O
LI

state-space landscape

global maximum

opjective
function

global minimum

COSt
function

current state

neighbors

Hill Climbing

Hill Climbing

function HILL-CLIMB(problem):
current = 1nitial state of problem
repeat:
neighbor = highest valued neighbor of current
1t neighbor not better than current:
return current
current = neighbor

Ccost: 1/

S I I
S O O O
S O O O
LI |
LI

| HRH | [
S O
PPl R
o | HHR
Il s [H

| (e
LI
HEENIIEEEE
Bl O
LI

ST

L (]
LI
HEENIIEEN
| —H
LI

T[T Tel
EEC= RN
EEERIEEE
e H
T TTTA T

ost: 11

EEEEEEEEE
L
HEEIIEEEN.
BE S el O W e - |
LI

Cost: 9

S L. I
LI
R
Bl N e - |
LI

global maximum

local maxima

global minimum

local minima

flat local maximum

shoulder

Hill Climbing Variants

Variant

Definition

Steepest-ascent

choose the highest-valued neighbor

stochastic

choose randomly from higher-valued
Nnelighbors

first-choice

choose the first higher-valued neighbor

random-restart

conduct hill climbing multiple times

local beam search

chooses the k highest-valued neighbors

Simulated Annealing

Simulated Annealing

e Farly on, higher "temperature”: more likely to accept
nelighbors that are worse than current state

e | ater on, lower "temperature”: less likely to accept
neighbors that are worse than current state

Simulated Annealing

function SIMULATED-ANNEALING(problem, max):
current = 1mitial state of problem
for t = 1 to max:
T'= TEMPERATURE(?)
neighbor = random neighbor of current
AE = how much better neighbor 1s than current
1t AE > 0:
current = neighbor
with probability e42/T set current = neighbor
return current

Traveling Salesman Problem

Linear Programming

Linear Programming

e MIiniMize a cost function ¢cixi + X2 + ... + CnXn

e \With constraints of form aixi +axxa+ ... + anxn <b
or of form aixxj+axxo+ ... +anxn =b

e \With bounds for each variable |; < x; <u;

Linear Programming Example

e WO IT

550/hour to run, Xz

achines X7 and Xo. X7 costs S

costs ¢

580/hour to run. Goal is to minimize cost.

e X7 requires 5 units of labor per hour. X> reguires 2
units of labor per hour. Total of 20 units of labor to

spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50x; + 80x,

e X7 requires 5 units of labor per hour. X> requires 2
units of labor per hour. Total of 20 units of labor to
spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

Constraint: 10x; + 12x, > 90

Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

Constraint: (—=10x)) + (—12x,) £ =90

Linear Programming Algorithms

e SIMmplex

e INterior-Point

Constraint Satisfaction

Taking classes:

Student;

Xxam slots:

Taking classes:

Student;

Constraint Satisfaction Problem

e Set of variables {Xi, Xa, ..., Xn!
e Set of domains for each variaple {Di, D, ..., Dn}

e Set of constraints C

0
o D
3 3
4]
/ o
9 D
9

Variables

100, 2), (1, 1), (1, 2), (2,0), ...}

Domains
{1,2,3,4,5,6,7, 8,9}

for each variable

Constraints
10,2)7 (1,) #(1,2)#(2,0), ...}

Variables

A
/ \ {A,B,C,D,E,F, G
e_

Q G for each variable
\ / \ Constraints
G \A#B, A#C, B¥C, B#D, B#E, C£E,

G C+F, D+E, E+F, E+G, F+G)

C_ .
\ Domains

{Monday, Tuesday, Wednesday }

hard constraints

constraints that must be satisfied In a
correct solution

soft constraints

constraints that express some notion of
which solutions are preferred over others

unary constraint

constraint involving only one variable

unary constraint

{A + Monday}

binary constraint

constraint Involving two variables

binary constraint

A # Bj

hode consistency

when all the values in a variable’'s domain
satisty the variable's unary constraints

A

B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

B

$Tue, Wed} {Mon, Tue, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

B

$Tue, Wed} {Mon, Tue, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

B

$Tue, Wed } {Mon, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

B

$Tue, Wed } {Mon, Wed}

{A + Mon, B # Tue, B + Mon, A # B}

A

$Tue, Wed} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

A

$Tue, Wed} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

arc consistency

when all the values in a variable's domain
satisty the variable's binary constraints

arc consistency

To make X arc-consistent with respect to Y,
remove elements from X's domain until every
choice for X has a possible choice for Y

A

$Tue, Wed} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

A

$Tue, Wed} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

{Tue} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

{Tue} { Wed }

{A + Mon, B # Tue, B + Mon, A # B}

Arc Consistency

function REVISE(csp, X, Y):
revised = false
for x in X.domain:
1f no y 1n Y.domain satisties constraint for (X, Y):
delete x from X.domain
revised = true
return revised

Arc Consistency

function AC-3(csp):
queue = all arcs 1n csp
while queue non-empty:
(X, Y) = DEQUEUE(queue)
1f REVISE(csp, X, Y):
1f s1ze of X.domain == 0:
return false
for each Z in X.neighbors - {Y}:
ENQUEUE(queue, (Z, X))
return frue

{Mon, Tue, Wed}

0

{Mon, Tue, Wed} G_G {Mon, Tue, Wed}

{Mon, Tue, Wed } Q %G {Mon, Tue, Wed}

{Mon, Tue, Wed } G e {Mon, Tue, Wed }

Search Problems

e INnitial state

e actions

e transition model
e goal test

e path cost function

CSPs as Search Problems

* Nitial state: empty assignment (NO variaples)

e actions: add a {variable = value} to assignment

e transition model: shows how adding an assignment
changes the assignment

e goal test: check if all variables assigned and
constraints all satisfied

e path cost function: all paths have same cost

Backtracking Search

Backtracking Search

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-V AR(assignment, csp)
for value 1n DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
result = BACKTRACK(assignment, csp)
if result # failure: return result
remove {var = value} from assignment
return failure

{Mon, Tue, Wed

0

fMon, Tue, Wed} G_G {Mon, Tue, Wed}

{Mon, Tue, Wed } Q %G {Mon, Tue, Wed}

{Mon, Tue, Wed } G e {Mon, Tue, Wed }

Mon

A

/ N\

fMon, Tue, Wed} G

/

{Mon, Tue, Wed} Q

\\e e G\

{Mon, Tue, Wed}

G {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Mon G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

A

N

Mon G_G {Mon, Tue, Wed}

{Mon, Tue, Wed} Q %G {Mon, Tue, Wed}

{Mon, Tue, Wed } G e {Mon, Tue, Wed }

Mon

0

{Mon, Tue, Wed}

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G_G
/ \
\ /G {Mon, Tue, Wed

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

Mon

A

_G {Mon, Tue, Wed}

\

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

Mon

A

\

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

Mon

A

_G {Mon, Tue, Wed}

\

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

Mon

0

Tue G_G {Mon, Tue, Wed}

Mon / {Mon Tue, Wed}
Tue

{Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G E— G
/ \
Mon Q

/G {Mon, Tue, Wed}

Wed {Mon Tue, Wed}

Mon

0

Tue e_e Mon

/ / \
Mon Q\ / {Mon, Tue, Wed)

Wed G e {Mon, Tue, Wed}

Mon

A

Tue e_e Mon

/ / \
Mon Q\ G (Mon, Tue, wed

Wed G e {Mon, Tue, Wed}

Mon

0

Tue G_

G Tue
/ / \
Mon Q\ /G {Mon, Tue, Wed?

Wed e {Mon, Tue, Wed }

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

Mon

0

d

Tue G_G We
\
0

e /
G\ /

Wed

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

° Mon
e Ne

/ \

Mon Q G {Mon, Tue, Wed}

ANPZ\

Wed G§e {Mon, Tue, Wed

Mon

0

{Mon, Tue, Wed}

Tue G E— G
/ \
Mon Q

/G {Mon, Tue, Wed}

Wed {Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G_G
/ \
\ /G {Mon, Tue, Wed

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

Mon

0

{Mon, Tue, Wed}

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G_G
/ \
\ /G {Mon, Tue, Wed

{Mon, Tue, Wed} G {Mon Tue, Wed}

Tue

Mon

0

{Mon, Tue, Wed}

Tue G_G
/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Tue

Mon

0

{Mon, Tue, Wed}

Tue e — G
/ \
Wed Q

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

A,
AN
Tue e

/

Wed Q G {Mon, Tue, Wed}

/\

G {Mon, Tue, Wed}

G

{Mon, Tue, Wed}

Mon

A

Tue G/_ G Mon

G {Mon, Tue, Wed}

-4
G/

e {Mon, Tue, Wed }

Mon

A

Tue G/_ G Mon

/ \

Wed Q G {Mon, Tue, Wed}

o e/

e {Mon, Tue, Wed }

Tue

A\
L G\

e {Mon, Tue, Wed }

{Mon, Tue, Wed}

{Mon, Tue, Wed}

e {Mon, Tue, Wed }

Mon

A

Tue e/_e Wed

G {Mon, Tue, Wed}

-4
G/

e {Mon, Tue, Wed }

Inference

Mon

0

{Mon, Tue, Wed}

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G_G
/ \
\ /G {Mon, Tue, Wed

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

Mon

0

{Mon, Tue, Wed}

Tue G_G
/ \
o

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{Mon, Tue, Wed}

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{ Wed }

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{ Wed }

Tue G_G
{Mon, Tue, Wed} Q/

/G {Mon, Tue, Wed}

{Mon} G {Mon Tue, Wed}

{Mon Tue, Wed}

{Mon Tue, Wed}

maintaining arc-consistency

algorithm tor enforcing arc-consistency
every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls
AC-3, starting with a queue of all arcs (7, X)
where Y Is a neighbor of X

function BACKTRACK (assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure

SELECT-UNASSIGNED-V AR

e minimum remaining values (MRV) heuristic: select
the variaple that has the smallest domain

e degree heuristic: select the variaple that has the
Nighest degree

Mon

0

{ Wed }

Tue G_G
/ \
(Mon, Wed} (€

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

Mon

0

{ Wed }

Tue G_G
/ \
(Mon, Wed} (€

/G {Mon, Tue, Wed}

{Mon, Tue, Wed} G {Mon Tue, Wed}

{Mon, Tue, Wed

0

fMon, Tue, Wed} G_G {Mon, Tue, Wed}

{Mon, Tue, Wed } Q %G {Mon, Tue, Wed}

{Mon, Tue, Wed } G e {Mon, Tue, Wed }

{Mon, Tue, Wed

0

{Mon, Tue, Wed} e_e {Mon, Tue, Wed}

{Mon, Tue, Wed } Q %G {Mon, Tue, Wed}

{Mon, Tue, Wed } G e {Mon, Tue, Wed }

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure

DOMAIN-V ALUES

¢ least-constraining values heuristic: return variaples in
order by numiber of choices that are ruled out for
neighboring variables

e try least-constraining values first

Mon

A

/ N\

fMon, Tue, Wed} G

/

{Mon, Tue, Wed} Q

\\e e G\

{Mon, Tue, Wed}

G {Tue, Wed}

{Mon, Tue}

Wed

Mon

4

fMon, Tue, Wed} G_G Wed

/

{Mon, Tue, Wed} Q

N\

{Mon, Tue, Wed}

o

5())61 + 8())62 e

le —+ 2X2 S 20

Problem Formulation
{\ [
(—10x,) + (= 12x,) < — 90 / \

il
G,

| ocal L Inear Constraint
Searcn Programming Satistaction

Optimization

INntroduction to

Artificial Intelligence
with Python

