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Optimization



optimization

CchoosIiNg the pest option from a set of
options



local search

search algoritnms that maintain a single
Nnode and searches py moving to a
nelighboring node
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Hill Climbing




































Hill Climbing

function HILL-CLIMB(problem):
current = 1nitial state of problem
repeat:
neighbor = highest valued neighbor of current
1t neighbor not better than current:
return current
current = neighbor



Ccost: 1/
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global maximum



local maxima




global minimum
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Hill Climbing Variants

Variant

Definition

Steepest-ascent

choose the highest-valued neighbor

stochastic

choose randomly from higher-valued
Nnelighbors

first-choice

choose the first higher-valued neighbor

random-restart

conduct hill climbing multiple times

local beam search

chooses the k highest-valued neighbors




Simulated Annealing



























Simulated Annealing

e Farly on, higher "temperature”: more likely to accept
nelighbors that are worse than current state

e | ater on, lower "temperature”: less likely to accept
neighbors that are worse than current state



Simulated Annealing

function SIMULATED-ANNEALING(problem, max):
current = 1mitial state of problem
for t = 1 to max:
T'= TEMPERATURE(?)
neighbor = random neighbor of current
AE = how much better neighbor 1s than current
1t AE > 0:
current = neighbor
with probability e42/T set current = neighbor
return current



Traveling Salesman Problem
























Linear Programming



Linear Programming

e MIiniMize a cost function ¢cixi + X2 + ... + CnXn

e \With constraints of form aixi +axxa+ ... + anxn <b
or of form aixxj+axxo+ ... +anxn =b

e \With bounds for each variable |; < x; <u;



Linear Programming Example

e WO IT

550/hour to run, Xz

achines X7 and Xo. X7 costs S

costs ¢

580/hour to run. Goal is to minimize cost.

e X7 requires 5 units of labor per hour. X> reguires 2
units of labor per hour. Total of 20 units of labor to

spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50x; + 80x,

e X7 requires 5 units of labor per hour. X> requires 2
units of labor per hour. Total of 20 units of labor to
spenda.

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

e X7 produces 10 units of output per hour. X> produces
12 units of output per hour. Company needs 90 units
of output.



Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

Constraint: 10x; + 12x, > 90



Linear Programming Example

Cost Function: 50x; + 80x,

Constraint: Sx; + 2x, < 20

Constraint: (—=10x)) + (—12x,) £ =90



Linear Programming Algorithms

e SIMmplex

e INterior-Point



Constraint Satisfaction







Taking classes:

Student;




Xxam slots:

Taking classes:

Student;


































Constraint Satisfaction Problem

e Set of variables {Xi, Xa, ..., Xn!
e Set of domains for each variaple {Di, D, ..., Dn}

e Set of constraints C
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Variables

100, 2), (1, 1), (1, 2), (2,0), ...}

Domains
{1,2,3,4,5,6,7, 8,9}

for each variable

Constraints
10,2)7 (1, ) #(1,2)#(2,0), ...}



Variables

A
/ \ {A,B,C,D,E,F, G
e_

Q G for each variable
\ / \ Constraints
G \A#B, A#C, B¥C, B#D, B#E, C£E,

G C+F, D+E, E+F, E+G, F+G)

C_ .
\ Domains

{Monday, Tuesday, Wednesday }




hard constraints

constraints that must be satisfied In a
correct solution



soft constraints

constraints that express some notion of
which solutions are preferred over others






unary constraint

constraint involving only one variable



unary constraint

{A + Monday}



binary constraint

constraint Involving two variables



binary constraint

A # Bj



hode consistency

when all the values in a variable’'s domain
satisty the variable's unary constraints
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arc consistency

when all the values in a variable's domain
satisty the variable's binary constraints



arc consistency

To make X arc-consistent with respect to Y,
remove elements from X's domain until every
choice for X has a possible choice for Y
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Arc Consistency

function REVISE(csp, X, Y):
revised = false
for x in X.domain:
1f no y 1n Y.domain satisties constraint for (X, Y):
delete x from X.domain
revised = true
return revised



Arc Consistency

function AC-3(csp):
queue = all arcs 1n csp
while queue non-empty:
(X, Y) = DEQUEUE(queue)
1f REVISE(csp, X, Y):
1f s1ze of X.domain == 0:
return false
for each Z in X.neighbors - {Y}:
ENQUEUE(queue, (Z, X))
return frue
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Search Problems

e INnitial state

e actions

e transition model
e goal test

e path cost function



CSPs as Search Problems

* Nitial state: empty assignment (NO variaples)

e actions: add a {variable = value} to assignment

e transition model: shows how adding an assignment
changes the assignment

e goal test: check if all variables assigned and
constraints all satisfied

e path cost function: all paths have same cost



Backtracking Search



Backtracking Search

function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-V AR(assignment, csp)
for value 1n DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
result = BACKTRACK(assignment, csp)
if result # failure: return result
remove {var = value} from assignment
return failure
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Inference
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maintaining arc-consistency

algorithm tor enforcing arc-consistency
every time we make a new assignment



maintaining arc-consistency

When we make a new assignment to X, calls
AC-3, starting with a queue of all arcs (7, X)
where Y Is a neighbor of X



function BACKTRACK (assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure



function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure



function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure



SELECT-UNASSIGNED-V AR

e minimum remaining values (MRV) heuristic: select
the variaple that has the smallest domain

e degree heuristic: select the variaple that has the
Nighest degree
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function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure



function BACKTRACK(assignment, csp):
it assignment complete: return assignment
var = SELECT-UNASSIGNED-VAR(assignment, csp)
for value in DOMAIN-VALUES(var, assignment, csSp):
if value consistent with assignment:
add {var = value} to assignment
inferences = INFERENCE(assignment, csp)
it inferences # failure: add inferences to assignment
result = BACKTRACK(assignment, csSp)
if result # failure: return result
remove {var = value} and inferences from assignment

return failure



DOMAIN-V ALUES

¢ least-constraining values heuristic: return variaples in
order by numiber of choices that are ruled out for
neighboring variables

e try least-constraining values first
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