
Introduction to
Artificial Intelligence

with Python

Optimization

optimization

choosing the best option from a set of
options

local search

search algorithms that maintain a single
node and searches by moving to a
neighboring node

B

A

B

Cost: 17

state-space landscape

global maximumobjective
function

global minimumcost
function

current state

neighbors

Hill Climbing

Hill Climbing

function HILL-CLIMB(problem):
 current = initial state of problem
 repeat:
 neighbor = highest valued neighbor of current
 if neighbor not better than current:
 return current
 current = neighbor

Cost: 17

Cost: 17

Cost: 17

Cost: 15

Cost: 13

Cost: 11

Cost: 9

global maximum

local maxima

global minimum

local minima

flat local maximum

shoulder

Variant Definition

steepest-ascent choose the highest-valued neighbor

stochastic
choose randomly from higher-valued

neighbors

first-choice choose the first higher-valued neighbor

random-restart conduct hill climbing multiple times

local beam search chooses the k highest-valued neighbors

Hill Climbing Variants

Simulated Annealing

Simulated Annealing

• Early on, higher "temperature": more likely to accept
neighbors that are worse than current state

• Later on, lower "temperature": less likely to accept
neighbors that are worse than current state

Simulated Annealing
function SIMULATED-ANNEALING(problem, max):
 current = initial state of problem
 for t = 1 to max:
 T = TEMPERATURE(t)
 neighbor = random neighbor of current
 ΔE = how much better neighbor is than current
 if ΔE > 0:
 current = neighbor
 with probability eΔE/T set current = neighbor
 return current

Traveling Salesman Problem

Linear Programming

Linear Programming

• Minimize a cost function c1x1 + c2x2 + ... + cnxn

• With constraints of form a1x1 + a2x2 + ... + anxn ≤ b
or of form a1x1 + a2x2 + ... + anxn = b

• With bounds for each variable li ≤ xi ≤ ui

Linear Programming Example

• Two machines X1 and X2. X1 costs $50/hour to run, X2
costs $80/hour to run. Goal is to minimize cost.

• X1 requires 5 units of labor per hour. X2 requires 2
units of labor per hour. Total of 20 units of labor to
spend.

• X1 produces 10 units of output per hour. X2 produces
12 units of output per hour. Company needs 90 units
of output.

Linear Programming Example

• Two machines X1 and X2. X1 costs $50/hour to run, X2
costs $80/hour to run.

• X1 requires 5 units of labor per hour. X2 requires 2
units of labor per hour. Total of 20 units of labor to
spend.

• X1 produces 10 units of output per hour. X2 produces
12 units of output per hour. Company needs 90 units
of output.

50x1 + 80x2Cost Function:

Linear Programming Example

• Two machines X1 and X2. X1 costs $50/hour to run, X2
costs $80/hour to run.

• X1 requires 5 units of labor per hour. X2 requires 2
units of labor per hour. Total of 20 units of labor to
spend.

• X1 produces 10 units of output per hour. X2 produces
12 units of output per hour. Company needs 90 units
of output.

50x1 + 80x2Cost Function:

5x1 + 2x2 ≤ 20Constraint:

Linear Programming Example

• Two machines X1 and X2. X1 costs $50/hour to run, X2
costs $80/hour to run.

• X1 requires 5 units of labor per hour. X2 requires 2
units of labor per hour. Total of 20 units of labor to
spend.

• X1 produces 10 units of output per hour. X2 produces
12 units of output per hour. Company needs 90 units
of output.

50x1 + 80x2Cost Function:

5x1 + 2x2 ≤ 20Constraint:

10x1 + 12x2 ≥ 90Constraint:

Linear Programming Example

• Two machines X1 and X2. X1 costs $50/hour to run, X2
costs $80/hour to run.

• X1 requires 5 units of labor per hour. X2 requires 2
units of labor per hour. Total of 20 units of labor to
spend.

• X1 produces 10 units of output per hour. X2 produces
12 units of output per hour. Company needs 90 units
of output.

50x1 + 80x2Cost Function:

5x1 + 2x2 ≤ 20Constraint:

(−10x1) + (−12x2) ≤ − 90Constraint:

Linear Programming Algorithms

• Simplex

• Interior-Point

Constraint Satisfaction

1

2

3

4

Student:

1

2

3

4

Student: Taking classes:

A B C

B D E

C E F

E F G

1

2

3

4

Student: Taking classes:

A B C

B D E

C E F

E F G

Exam slots:

Monday

Tuesday

Wednesday

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

1

2

3

4

A B C

B D E

C E F

E F G

A

B C

D

E

F

G

A

B C

D

E

F

G

Constraint Satisfaction Problem

• Set of variables {X1, X2, ..., Xn}

• Set of domains for each variable {D1, D2, ..., Dn}

• Set of constraints C

Variables

{(0, 2), (1, 1), (1, 2), (2, 0), ...}

Domains

{1, 2, 3, 4, 5, 6, 7, 8, 9}
for each variable

Constraints

{(0, 2) ≠ (1, 1) ≠ (1, 2) ≠ (2, 0), ...}

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

A

B C

D

E

F

G

Variables

{A, B, C, D, E, F, G}

Domains

{Monday, Tuesday, Wednesday}
for each variable

Constraints
{A≠B, A≠C, B≠C, B≠D, B≠E, C≠E,

C≠F, D≠E, E≠F, E≠G, F≠G}

hard constraints

constraints that must be satisfied in a
correct solution

soft constraints

constraints that express some notion of
which solutions are preferred over others

A

B C

D

E

F

G

unary constraint

constraint involving only one variable

unary constraint

{A ≠ Monday}

binary constraint

constraint involving two variables

binary constraint

{A ≠ B}

node consistency

when all the values in a variable's domain
satisfy the variable's unary constraints

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Mon, Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Mon, Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

{Mon, Tue, Wed}

A B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Mon, Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

arc consistency

when all the values in a variable's domain
satisfy the variable's binary constraints

arc consistency

To make X arc-consistent with respect to Y,
remove elements from X's domain until every
choice for X has a possible choice for Y

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue, Wed} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

A B

{Tue} {Wed}

{A ≠ Mon, B ≠ Tue, B ≠ Mon, A ≠ B}

Arc Consistency

function REVISE(csp, X, Y):
 revised = false
 for x in X.domain:
 if no y in Y.domain satisfies constraint for (X, Y):
 delete x from X.domain
 revised = true
 return revised

Arc Consistency
function AC-3(csp):
 queue = all arcs in csp
 while queue non-empty:
 (X, Y) = DEQUEUE(queue)
 if REVISE(csp, X, Y):
 if size of X.domain == 0:
 return false
 for each Z in X.neighbors - {Y}:
 ENQUEUE(queue, (Z, X))
 return true

A

B C

D

E

F

G

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

Search Problems

• initial state

• actions

• transition model

• goal test

• path cost function

CSPs as Search Problems

• initial state: empty assignment (no variables)

• actions: add a {variable = value} to assignment

• transition model: shows how adding an assignment
changes the assignment

• goal test: check if all variables assigned and
constraints all satisfied

• path cost function: all paths have same cost

Backtracking Search

Backtracking Search
function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} from assignment
 return failure

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Tue {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Tue {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed

A

B C

D

E

F

G

Mon

Tue

Mon

Wed {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Tue

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Tue

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Wed

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Mon

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Tue

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

{Mon, Tue, Wed}

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Mon

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Mon

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon {Mon, Tue, Wed}

Tue

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Mon

Tue

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Mon

Tue

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Tue

Tue

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Tue

Tue

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed

Inference

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

Mon

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Tue, Wed}

{Mon} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Mon, Tue, Wed}

{Tue}

{Wed}

A

B C

D

E

F

G

Mon

Tue

{Wed}

{Mon} {Wed}

{Tue}

{Wed}

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed

maintaining arc-consistency

algorithm for enforcing arc-consistency
every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls
AC-3, starting with a queue of all arcs (Y, X)
where Y is a neighbor of X

function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 inferences = INFERENCE(assignment, csp)
 if inferences ≠ failure: add inferences to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} and inferences from assignment
 return failure

function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 inferences = INFERENCE(assignment, csp)
 if inferences ≠ failure: add inferences to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} and inferences from assignment
 return failure

function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 inferences = INFERENCE(assignment, csp)
 if inferences ≠ failure: add inferences to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} and inferences from assignment
 return failure

SELECT-UNASSIGNED-VAR

• minimum remaining values (MRV) heuristic: select
the variable that has the smallest domain

• degree heuristic: select the variable that has the
highest degree

A

B C

D

E

F

G

Mon

Tue

{Mon, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}

A

B C

D

E

F

G

Mon

Tue

{Mon, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Wed}

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

A

B C

D

E

F

G

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} {Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 inferences = INFERENCE(assignment, csp)
 if inferences ≠ failure: add inferences to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} and inferences from assignment
 return failure

function BACKTRACK(assignment, csp):
 if assignment complete: return assignment
 var = SELECT-UNASSIGNED-VAR(assignment, csp)
 for value in DOMAIN-VALUES(var, assignment, csp):
 if value consistent with assignment:
 add {var = value} to assignment
 inferences = INFERENCE(assignment, csp)
 if inferences ≠ failure: add inferences to assignment
 result = BACKTRACK(assignment, csp)
 if result ≠ failure: return result
 remove {var = value} and inferences from assignment
 return failure

DOMAIN-VALUES

• least-constraining values heuristic: return variables in
order by number of choices that are ruled out for
neighboring variables

• try least-constraining values first

A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} Wed

{Mon, Tue}

{Tue, Wed}

A

B C

D

E

F

G

Mon

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed} Wed

{Mon, Tue}

Wed

A

B C

D

E

F

G

Mon

Tue

Wed

Mon Wed

Tue

Wed

Problem Formulation

Local
Search

50x1 + 80x2

5x1 + 2x2 ≤ 20
(−10x1) + (−12x2) ≤ − 90

Linear
Programming

Constraint
Satisfaction

A

B C

D

E

F

G

Optimization

Introduction to
Artificial Intelligence

with Python

