
Introduction to
Artificial Intelligence

with Python

Learning

Supervised Learning

supervised learning

given a data set of input-output pairs, learn
a function to map inputs to outputs

classification

supervised learning task of learning a
function mapping an input point to a
discrete category

Date Humidity
(relative humidity)

Pressure
(sea level, mb)

Rain

Date Humidity
(relative humidity)

Pressure
(sea level, mb)

Rain

January 1 93% 999.7 Rain

January 2 49% 1015.5 No Rain

January 3 79% 1031.1 No Rain

January 4 65% 984.9 Rain

January 5 90% 975.2 Rain

h(humidity, pressure)

f(93, 999.7) = Rain
f(49, 1015.5) = No Rain

f(humidity, pressure)

f(79, 1031.1) = No Rain

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

nearest-neighbor classification

algorithm that, given an input, chooses the
class of the nearest data point to that input

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

k-nearest-neighbor classification

algorithm that, given an input, chooses the
most common class out of the k nearest
data points to that input

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

x1 = Humidity
x2 = Pressure

h(x1, x2) = No Rain otherwise
Rain if w0 + w1x1 + w2x2 ≥ 0

h(x1, x2) = 0 otherwise
1 if w0 + w1x1 + w2x2 ≥ 0

Weight Vector w: (w0, w1, w2)
Input Vector x: (1, x1, x2)

w · x: w0 + w1x1 + w2x2

hw(x) =
0 otherwise
1 if w · x ≥ 0

Weight Vector w: (w0, w1, w2)
Input Vector x: (1, x1, x2)

w · x: w0 + w1x1 + w2x2

perceptron learning rule

Given data point (x, y), update each weight
according to:

wi = wi + α(y - hw(x)) × xi

perceptron learning rule

Given data point (x, y), update each weight
according to:

wi = wi + α(actual value - estimate) × xi

o
u

tp
u

t

w · x
0

1

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

o
u

tp
u

t

w · x
0

1
hard threshold

o
u

tp
u

t

w · x
0

1
soft threshold

Support Vector Machines

maximum margin separator

boundary that maximizes the distance
between any of the data points

regression

supervised learning task of learning a
function mapping an input point to a
continuous value

h(advertising)

f(1200) = 5800
f(2800) = 13400

f(advertising)

f(1800) = 8400

advertising

sa
le

s

Evaluating Hypotheses

loss function

function that expresses how poorly our
hypothesis performs

0-1 loss function

L(actual, predicted) =
 0 if actual = predicted,
 1 otherwise

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

0

0

0
0

0

0
0

0

0 0

0 0

0

00

0
0

0

0 0 0

0 0

0

0

1

1

1

1

0

L1 loss function

L(actual, predicted) = | actual - predicted |

advertising

sa
le

s

advertising

sa
le

s

L2 loss function

L(actual, predicted) = (actual - predicted)2

overfitting

a model that fits too closely to a particular
data set and therefore may fail to generalize
to future data

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

humidity

p
re

ss
u

re

advertising

sa
le

s

advertising

sa
le

s

penalizing hypotheses that are more complex
to favor simpler, more general hypotheses

cost(h) = loss(h)

penalizing hypotheses that are more complex
to favor simpler, more general hypotheses

cost(h) = loss(h) + complexity(h)

penalizing hypotheses that are more complex
to favor simpler, more general hypotheses

cost(h) = loss(h) + λcomplexity(h)

regularization

penalizing hypotheses that are more complex
to favor simpler, more general hypotheses

cost(h) = loss(h) + λcomplexity(h)

holdout cross-validation

splitting data into a training set and a
test set, such that learning happens on the
training set and is evaluated on the test set

k-fold cross-validation

splitting data into k sets, and experimenting
k times, using each set as a test set once,
and using remaining data as training set

scikit-learn

Reinforcement Learning

reinforcement learning

given a set of rewards or punishments, learn
what actions to take in the future

Agent

Environment

stateaction reward

Markov Decision Process

model for decision-making, representing
states, actions, and their rewards

Markov Decision Process

model for decision-making, representing
states, actions, and their rewards

X0 X1 X2 X3 X4

Markov Chain

r

r

r

r r r

r r r

r r r

Markov Decision Process

•Set of states S

•Set of actions ACTIONS(s)

•Transition model P(s' | s, a)

•Reward function R(s, a, s')

Q-learning

method for learning a function Q(s, a),
estimate of the value of performing action a
in state s

Q-learning Overview

• Start with Q(s, a) = 0 for all s, a

• When we taken an action and receive a reward:

• Estimate the value of Q(s, a) based on current
reward and expected future rewards

• Update Q(s, a) to take into account old estimate as
well as our new estimate

Q-learning

• Start with Q(s, a) = 0 for all s, a

• Every time we take an action a in state s and observe a
reward r, we update:

Q(s, a) ← Q(s, a) + α(new value estimate - old value estimate)

Q-learning

• Start with Q(s, a) = 0 for all s, a

• Every time we take an action a in state s and observe a
reward r, we update:

Q(s, a) ← Q(s, a) + α(new value estimate - Q(s, a))

Q-learning

• Start with Q(s, a) = 0 for all s, a

• Every time we take an action a in state s and observe a
reward r, we update:

Q(s, a) ← Q(s, a) + α((r + future reward estimate) - Q(s, a))

Q-learning

• Start with Q(s, a) = 0 for all s, a

• Every time we take an action a in state s and observe a
reward r, we update:

Q(s, a) ← Q(s, a) + α((r + maxa' Q(s', a')) - Q(s, a))

Q-learning

• Start with Q(s, a) = 0 for all s, a

• Every time we take an action a in state s and observe a
reward r, we update:

Q(s, a) ← Q(s, a) + α((r + γ maxa' Q(s', a')) - Q(s, a))

Greedy Decision-Making

• When in state s, choose action a with highest Q(s, a)

Explore vs. Exploit

ε-greedy

• Set ε equal to how often we want to move randomly.

• With probability 1 - ε, choose estimated best move.

• With probability ε, choose a random move.

Nim

function approximation

approximating Q(s, a), often by a function
combining various features, rather than
storing one value for every state-action pair

Unsupervised Learning

unsupervised learning

given input data without any additional
feedback, learn patterns

Clustering

clustering

organizing a set of objects into groups in
such a way that similar objects tend to be in
the same group

Some Clustering Applications

• Genetic research

• Image segmentation

• Market research

• Medical imaging

• Social network analysis.

k-means clustering

algorithm for clustering data based on
repeatedly assigning points to clusters and
updating those clusters' centers

Learning

•Supervised Learning

•Reinforcement Learning

•Unsupervised Learning

Learning

Introduction to
Artificial Intelligence

with Python

