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Learning



Supervised Learning



supervised learning

given a data set of input-output pairs, learn 
a function to map inputs to outputs



classification

supervised learning task of learning a 
function mapping an input point to a 
discrete category





Date Humidity 
(relative humidity)

Pressure 
(sea level, mb)

Rain



Date Humidity 
(relative humidity)

Pressure 
(sea level, mb)

Rain

January 1 93% 999.7 Rain

January 2 49% 1015.5 No Rain

January 3 79% 1031.1 No Rain

January 4 65% 984.9 Rain

January 5 90% 975.2 Rain



h(humidity, pressure)

f(93, 999.7) = Rain
f(49, 1015.5) = No Rain

f(humidity, pressure)

f(79, 1031.1) = No Rain
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nearest-neighbor classification

algorithm that, given an input, chooses the 
class of the nearest data point to that input
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k-nearest-neighbor classification

algorithm that, given an input, chooses the 
most common class out of the k nearest 
data points to that input
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x1 = Humidity
x2 = Pressure

h(x1, x2) = No Rain otherwise
Rain if   w0 + w1x1 + w2x2  ≥ 0



h(x1, x2) = 0 otherwise
1 if   w0 + w1x1 + w2x2  ≥ 0

Weight Vector w: (w0, w1, w2)
Input Vector x: (1, x1, x2)

w · x: w0 + w1x1 + w2x2 



hw(x) =
0 otherwise
1 if  w · x  ≥ 0

Weight Vector w: (w0, w1, w2)
Input Vector x: (1, x1, x2)

w · x: w0 + w1x1 + w2x2 



perceptron learning rule

Given data point  (x, y), update each weight 
according to: 

wi = wi + α(y - hw(x)) × xi



perceptron learning rule

Given data point  (x, y), update each weight 
according to: 

wi = wi + α(actual value - estimate) × xi
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Support Vector Machines









maximum margin separator

boundary that maximizes the distance 
between any of the data points







regression

supervised learning task of learning a 
function mapping an input point to a 
continuous value



h(advertising)

f(1200) = 5800
f(2800) = 13400

f(advertising)

f(1800) = 8400
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Evaluating Hypotheses



loss function

function that expresses how poorly our 
hypothesis performs



0-1 loss function

L(actual, predicted) = 
        0 if actual = predicted, 
        1 otherwise
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L1 loss function

L(actual, predicted) = | actual - predicted |
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L2 loss function

L(actual, predicted) = (actual - predicted)2



overfitting

a model that fits too closely to a particular 
data set and therefore may fail to generalize 
to future data
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penalizing hypotheses that are more complex 
to favor simpler, more general hypotheses 

cost(h) = loss(h)



penalizing hypotheses that are more complex 
to favor simpler, more general hypotheses 

cost(h) = loss(h) +   complexity(h)



penalizing hypotheses that are more complex 
to favor simpler, more general hypotheses 

cost(h) = loss(h) + λcomplexity(h)



regularization

penalizing hypotheses that are more complex 
to favor simpler, more general hypotheses 

cost(h) = loss(h) + λcomplexity(h)



holdout cross-validation

splitting data into a training set and a 
test set, such that learning happens on the 
training set and is evaluated on the test set



k-fold cross-validation

splitting data into k sets, and experimenting 
k times, using each set as a test set once, 
and using remaining data as training set



scikit-learn



Reinforcement Learning



reinforcement learning

given a set of rewards or punishments, learn 
what actions to take in the future



Agent

Environment

stateaction reward



Markov Decision Process

model for decision-making, representing 
states, actions, and their rewards



Markov Decision Process

model for decision-making, representing 
states, actions, and their rewards



X0 X1 X2 X3 X4

Markov Chain
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Markov Decision Process

•Set of states S 

•Set of actions ACTIONS(s) 

•Transition model P(s' | s, a) 

•Reward function R(s, a, s')



















Q-learning

method for learning a function Q(s, a), 
estimate of the value of performing action a 
in state s



Q-learning Overview

• Start with Q(s, a) = 0 for all s, a 

• When we taken an action and receive a reward: 

• Estimate the value of Q(s, a) based on current 
reward and expected future rewards 

• Update Q(s, a) to take into account old estimate as 
well as our new estimate



Q-learning

• Start with Q(s, a) = 0 for all s, a 

• Every time we take an action a in state s and observe a 
reward r, we update: 
 
Q(s, a) ← Q(s, a) + α(new value estimate - old value estimate)



Q-learning

• Start with Q(s, a) = 0 for all s, a 

• Every time we take an action a in state s and observe a 
reward r, we update: 
 
Q(s, a) ← Q(s, a) + α(new value estimate - Q(s, a))



Q-learning

• Start with Q(s, a) = 0 for all s, a 

• Every time we take an action a in state s and observe a 
reward r, we update: 
 
Q(s, a) ← Q(s, a) + α((r + future reward estimate) - Q(s, a))



Q-learning

• Start with Q(s, a) = 0 for all s, a 

• Every time we take an action a in state s and observe a 
reward r, we update: 
 
Q(s, a) ← Q(s, a) + α((r + maxa' Q(s', a')) - Q(s, a))



Q-learning

• Start with Q(s, a) = 0 for all s, a 

• Every time we take an action a in state s and observe a 
reward r, we update: 
 
Q(s, a) ← Q(s, a) + α((r + γ maxa' Q(s', a')) - Q(s, a))



Greedy Decision-Making

• When in state s, choose action a with highest Q(s, a)







Explore vs. Exploit



ε-greedy

• Set ε equal to how often we want to move randomly. 

• With probability 1 - ε, choose estimated best move. 

• With probability ε, choose a random move.



Nim



















function approximation

approximating Q(s, a), often by a function 
combining various features, rather than 
storing one value for every state-action pair 



Unsupervised Learning



unsupervised learning

given input data without any additional 
feedback, learn patterns



Clustering



clustering

organizing a set of objects into groups in 
such a way that similar objects tend to be in 
the same group



Some Clustering Applications

• Genetic research 

• Image segmentation 

• Market research 

• Medical imaging 

• Social network analysis.



k-means clustering

algorithm for clustering data based on 
repeatedly assigning points to clusters and 
updating those clusters' centers

























Learning

•Supervised Learning 

•Reinforcement Learning 

•Unsupervised Learning
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