Introduction to Artificial Intelligence with Python
Language
Natural Language Processing
Natural Language Processing

• automatic summarization
• information extraction
• language identification
• machine translation
• named entity recognition
• speech recognition
• text classification
• word sense disambiguation
• ...
Syntax
“Just before nine o’clock Sherlock Holmes stepped briskly into the room.”
‘Just before Sherlock Holmes nine o’clock stepped briskly the room.’
"I saw the man on the mountain with a telescope."
Semantics
“Just before nine o’clock Sherlock Holmes stepped briskly into the room.”
“Sherlock Holmes stepped briskly into the room just before nine o’clock.”
"A few minutes before nine, Sherlock Holmes walked quickly into the room."
“Colorless green ideas sleep furiously.”
Big rig carrying fruit crashes on 210 Freeway, creates jam

By JOSEPH SERNA MAY 20, 2013 | 6:35 AM

Monday's morning commute started off horribly for drivers in the San Gabriel Valley when a big rig carrying fruit overturned on the 210, blocking lanes in both directions in Monrovia for most of the morning.

The big rig crashed through the center divider just before 5 a.m. near Myrtle Avenue. Three westbound lanes and two eastbound lanes will be blocked until about 9:15 a.m., according to the California Highway Patrol.

Westbound traffic appeared to be backed up to the 605 freeway.

The trailer is estimated to weigh about 35,000 pounds, according to the CHP.
Natural Language Processing
Syntax
formal grammar

a system of rules for generating sentences in a language
Context-Free Grammar
she saw the city
she saw the city
N → she | city | car | Harry | ...
D → the | a | an | ...
V → saw | ate | walked | ...
P → to | on | over | ...
ADJ → blue | busy | old | ...
NP → N | D N
NP → N | D N

NP
N
she
NP → N | D N

NP
 ^
 | D
 └── the

 ^
 | N
 └── city
VP → V | V NP
VP → V | V NP

VP
 V
 walked
VP → V | V NP

VP
 └── NP
 └── N
 │
 └── the

 └── V
 └── saw

 └── D
 └── city
S → NP VP
S → NP VP

S
 /\
 NP VP
 /\ /
 N V NP
 / \ /|
she saw the city
nltk
n-gram

A contiguous sequence of n items from a sample of text.
character n-gram

a contiguous sequence of n characters from a sample of text
word n-gram

a contiguous sequence of n words from a sample of text
unigram

a contiguous sequence of 1 item from a sample of text
bigram

a contiguous sequence of 2 items from a sample of text
trigrams

a contiguous sequence of 3 items from a sample of text
“How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?”
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
“How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?”
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
tokenization

the task of splitting a sequence of characters into pieces (tokens)
word tokenization

the task of splitting a sequence of characters into words
sentence tokenization

the task of splitting a sequence of characters into sentences
“Whatever remains, however improbable, must be the truth.”
"Whatever remains, however improbable, must be the truth."
“Whatever remains, however improbable, must be the truth.”
“Whatever remains, however improbable, must be the truth.”

["Whatever", "remains", "however", "improbable", "must", "be", "the", "truth"]
"Just before nine o’clock Sherlock Holmes stepped briskly into the room."
“Just before nine o’clock Sherlock Holmes stepped briskly into the room.”
"He was dressed in a sombre yet rich style, in black frock-coat, shining hat, neat brown gaiters, and well-cut pearl-grey trousers."
"He was dressed in a sombre yet rich style, in black **frock-coat**, shining hat, neat brown gaiters, and **well-cut pearl-grey** trousers."
"I cannot waste time over this sort of fantastic talk, Sherlock. If you can catch the man, catch him, and let me know when you have done it."
"I cannot waste time over this sort of fantastic talk, Sherlock. If you can catch the man, catch him, and let me know when you have done it."
"I cannot waste time over this sort of fantastic talk, Sherlock. **If you can catch the man, catch him, and let me know when you have done it.**"
"I cannot waste time over this sort of fantastic talk, Sherlock. If you can catch the man, catch him, and let me know when you have done it."
"I cannot waste time over this sort of fantastic talk, Mr. Holmes. If you can catch the man, catch him, and let me know when you have done it."
"I cannot waste time over this sort of fantastic talk, Mr. Holmes. If you can catch the man, catch him, and let me know when you have done it."
“I cannot waste time over this sort of fantastic talk, Mr. Holmes. If you can catch the man, catch him, and let me know when you have done it.”
"I cannot waste time over this sort of fantastic talk, Mr. Holmes. If you can catch the man, catch him, and let me know when you have done it."
"I cannot waste time over this sort of fantastic talk, Mr. Holmes. If you can catch the man, catch him, and let me know when you have done it."
“I cannot waste time over this sort of fantastic talk, Mr. Holmes,” he said. “If you can catch the man, catch him, and let me know when you have done it.”
Markov Models
Text Categorization
“My grandson loved it! So much fun!”

“Product broke after a few days.”

“One of the best games I’ve played in a long time.”

“Kind of cheap and flimsy, not worth it.”
"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I’ve played in a long time."

"Kind of cheap and flimsy, not worth it."
"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I’ve played in a long time."

"Kind of cheap and flimsy, not worth it."
bag-of-words model

model that represents text as an unordered collection of words
Naive Bayes
Bayes' Rule

\[P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)} \]
\[P(Positive) \]
\[P(Negative) \]
$P(😀)$

$P(😔)$
“My grandson loved it!”
$P(\smiley)$
P(😀 | "my grandson loved it")
$P(😀 \mid "my", "grandson", "loved", "it")$
$P(😀 | "my", "grandson", "loved", "it")$
\[P(😀 | "my", "grandson", "loved", "it") \]

equal to

\[
\frac{P("my", "grandson", "loved", "it" | 😀)P(😀)}{P("my", "grandson", "loved", "it")}
\]
\[P(😊 | "my", "grandson", "loved", "it") \]

proportional to

\[P("my", "grandson", "loved", "it" | 😊)P(😊) \]
$P(😀 | "my", "grandson", "loved", "it")$

proportional to

$P(😊, "my", "grandson", "loved", "it")$
$P(😀 | \"my\", \"grandson\", \"loved\", \"it\")$

naively proportional to

$P(😀)P(\"my\" | ‍😀)P(\"grandson\" | ‍😀)P(\"loved\" | ‍😀)P(\"it\" | ‍😀)$
$P(😀) = \frac{\text{number of positive samples}}{\text{number of total samples}}$
$P(\text{"loved"} \mid 😊) = \frac{\text{number of positive samples with "loved"}}{\text{number of positive samples}}$
\[P(😄) P("my" \mid 😄) P("grandson" \mid 😄) \\
P("loved" \mid 😕) P("it" \mid 😄) \]

<table>
<thead>
<tr>
<th></th>
<th>😄</th>
<th>😕</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>😄</th>
<th>😕</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
<td>0.08</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>
$P(😀)P("my" \mid 😀)P("grandson" \mid 😀)P("loved" \mid 🙂)P("it" \mid 🙂)$
$P(😀)P("my" | 😁)P("grandson" | 😁) P("loved" | 😁) P("it" | 😁)

<table>
<thead>
<tr>
<th>😁</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

![Table]

<table>
<thead>
<tr>
<th>😁</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
</tr>
</tbody>
</table>

😀 0.00014112
\[
P(😀)P("my" \mid 😀)P("grandson" \mid 😊) \\
P("loved" \mid 😞)P("it" \mid 😊)
\]

<table>
<thead>
<tr>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
</tr>
</tbody>
</table>

😊 0.00014112
$$P(😊)P("my" \mid 😞)P("grandson" \mid 😞) \newline P("loved" \mid 😞) P("it" \mid 😞)$$

<table>
<thead>
<tr>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>my</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>grandson</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>loved</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>it</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>
\[P(\text{🙁})P(\text{"my"} \mid \text{🙁})P(\text{"grandson"} \mid \text{🙁}) \]
\[P(\text{"loved"} \mid \text{🙁}) P(\text{"it"} \mid \text{şi}) \]

<table>
<thead>
<tr>
<th>😁</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>😁</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>😁</td>
<td>😞</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>😁</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
</tr>
</tbody>
</table>

: wink: 0.00014112
$P(,:) P("my" | :) P("grandson" | :) \\
P("loved" | :) P("it" | :))$

<table>
<thead>
<tr>
<th>Emoji</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>😊 😞</td>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
<td>0.08</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>

0.00014112 😊 0.00006528 😞
\[P(\text{🙁})P(\text{"my" } | \text{🙁})P(\text{"grandson" } | \text{🙁})\]
\[P(\text{"loved" } | \text{🙁}) P(\text{"it" } | \text{🙁})\]

<table>
<thead>
<tr>
<th></th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
<td>0.08</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\[0.00014112\]

\[0.00006528\]
\[P(😊)P("my" | 😞)P("grandson" | 😞) \]
\[P("loved" | 😞) P("it" | 😞) \]

<table>
<thead>
<tr>
<th></th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
<td>0.08</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>

😊 0.6837

😞 0.3163
\[
P(☉☉)P("my" | ☉☉)P("grandson" | ☉☉) \\
P("loved" | ☉☉) P("it" | ☉☉)
\]

<table>
<thead>
<tr>
<th></th>
<th>😃</th>
<th>☹</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>grandson</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
<td>0.08</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>
\[P(\square)P("my" | \square)P("grandson" | \square) P("loved" | \square) P("it" | \square) \]
\[P(\frown)P("my" \mid \frown)P("grandson" \mid \frown) \]
\[P("loved" \mid \frown)P("it" \mid \frown) \]

<table>
<thead>
<tr>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>😊</th>
<th>😞</th>
</tr>
</thead>
<tbody>
<tr>
<td>my</td>
<td>0.30</td>
</tr>
<tr>
<td>grandson</td>
<td>0.00</td>
</tr>
<tr>
<td>loved</td>
<td>0.32</td>
</tr>
<tr>
<td>it</td>
<td>0.30</td>
</tr>
</tbody>
</table>

0.00000000
0.00006528
additive smoothing

adding a value α to each value in our distribution to smooth the data
Laplace smoothing

adding 1 to each value in our distribution: pretending we’ve seen each value one more time than we actually have
information retrieval

the task of finding relevant documents in response to a user query
topic modeling

models for discovering the topics for a set of documents
term frequency

number of times a term appears in a document
function words

words that have little meaning on their own, but are used to grammatically connect other words
function words

am, by, do, is, which, with, yet, ...
content words

words that carry meaning independently
content words

algorithm, category, computer, ...
inverse document frequency

measure of how common or rare a word is across documents
inverse document frequency

\[
\log \frac{\text{TotalDocuments}}{\text{NumDocumentsContaining}(\text{word})}
\]
tf-idf

ranking of what words are important in a document by multiplying term frequency (TF) by inverse document frequency (IDF)
Semantics
information extraction

the task of extracting knowledge from documents
"When Facebook was founded in 2004, it began with a seemingly innocuous mission: to connect friends. Some seven years and 800 million users later, the social network has taken over most aspects of our personal and professional lives, and is fast becoming the dominant communication platform of the future."

"Remember, back when Amazon was founded in 1994, most people thought his idea to sell books over this thing called the internet was crazy. A lot of people had never even hard of the internet."

Business Insider, 2018
”When Facebook was founded in 2004, it began with a seemingly innocuous mission: to connect friends. Some seven years and 800 million users later, the social network has taken over most aspects of our personal and professional lives, and is fast becoming the dominant communication platform of the future.”

”Remember, back when Amazon was founded in 1994, most people thought his idea to sell books over this thing called the internet was crazy. A lot of people had never even heard of the internet.”

Business Insider, 2018
“When Facebook was founded in 2004, it began with a seemingly innocuous mission: to connect friends. Some seven years and 800 million users later, the social network has taken over most aspects of our personal and professional lives, and is fast becoming the dominant communication platform of the future.”

“Remember, back when Amazon was founded in 1994, most people thought his idea to sell books over this thing called the internet was crazy. A lot of people had never even heard of the internet.”

Business Insider, 2018
When {company} was founded in {year},
WordNet
Word Representation
"He wrote a book."
one-hot representation

representation of meaning as a vector with a single 1, and with other values as 0
"He wrote a book."
"He wrote a book."
"He wrote a book."
"He authored a novel."

wrote [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
authored [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
book [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
novel [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
distribution representation

representation of meaning distributed across multiple values
"He wrote a book."
"You shall know a word by the company it keeps."

J. R. Firth, 1957
for he ate
for	breakfast	he	ate
for	lunch	he	ate
for	**dinner**	he	ate
for he ate
word2vec

model for generating word vectors
skip-gram architecture

neural network architecture for predicting context words given a target word
Language
Artificial Intelligence
Knowledge

\[P \rightarrow Q \]
\[\quad P \]
\[\quad Q \]
Uncertainty
Optimization
Learning

Inbox

Spam
Neural Networks
Language

NP

NP

ADJ

artificial

N

intelligence

P

with

N

python
Introduction to Artificial Intelligence with Python