Introduction to
 Artificial Intelligence
 with Python

Language

Natural Language Processing

Natural Language Processing

- automatic summarization
- information extraction
- machine translation
- question answering
- text classification
- ...

Syntax

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."
"Just before Sherlock Holmes nine o'clock stepped briskly the room."
"I saw the man on the mountain with a telescope."

Semantics

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."
"A few minutes before nine, Sherlock Holmes walked quickly into the room."

"Colorless green ideas sleep furiously."

Natural Language Processing

formal grammar

a system of rules for generating sentences in a language

Context-Free Grammar

$\mathrm{N} \rightarrow$ she | city | car | Harry | ...
$\mathrm{D} \rightarrow$ the $|\mathrm{a}| \mathrm{an} \mid \ldots$
V \rightarrow saw | ate | walked | ...
P \rightarrow to | on \| over \| ...
ADJ \rightarrow blue | busy | old | ...
$N P \rightarrow N \mid D N$

$\mathrm{VP} \rightarrow \mathrm{V} \mid \mathrm{V}$ NP

$$
V P \rightarrow V \mid V N P \quad V
$$

$S \rightarrow N P$ VP

$S \rightarrow N P$ VP

nltk

n-gram

a contiguous sequence of n items from a sample of text
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"
"How often have I said to you that when you have eliminated the impossible whatever remains, however improbable, must be the truth?"

tokenization

the task of splitting a sequence of characters into pieces (tokens)

Markov Chains

$\mathbf{O} \rightarrow \mathbf{O} \rightarrow \mathbf{O} \rightarrow \mathbf{O}_{-}$

Text Categorization

$$
\odot
$$

"My grandson loved it! So much fun!"
"Product broke after a few days."
"One of the best games I've played in a long time."
"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."
"One of the best games I've played in a long time."
"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."
"One of the best games I've played in a long time."
"Kind of cheap and flimsy, not worth it."

bag-of-words model

model that represents text as an unordered collection of words

Naive Bayes

Bayes' Rule

$P\left(\begin{array}{ll}b & a\end{array}\right)=\underline{P(a b) P(b)}$ $P(a)$

P (Positive)

P (Negative)

$$
\begin{aligned}
& P(*) \\
& P(\odot)
\end{aligned}
$$

"My grandson loved it!"

$P($ ()
$P(:)$ | "my grandson loved it")

$P(\odot \mid$ "my", "grandson", "loved", "it")

$P(:)$ "my", "grandson", "loved", "it")
$P(;)$ "my", "grandson", "loved", "it")

equal to

$P\left(\right.$ "my", "grandson", "loved", "it" | :) $P()^{-)}$
P("my", "grandson", "loved", "it")
$P(;)$ "my", "grandson", "loved", "it") proportional to
$P($ "my", "grandson", "loved", "it" | :) $P($)

$P(;)$ "my", "grandson", "loved", "it")

proportional to
$P(\Theta$, "my", "grandson", "loved", "it")
$P($ | "my", "grandson", "loved", "it")
naively proportional to
$\left.P()^{-}\right) P($ "my" \mid) $) P($ "grandson" \mid) $)$ $P($ "loved" \mid) $) P($ "it" \mid) $)$

$P()=$

number of positive samples

number of total samples

number of positive samples with "loved"
$P\left(\right.$ "loved" | $\left.{ }^{\text {O }}\right)=$
number of positive samples
$P(\Theta) P($ "my" | $)=P($ "grandson" \mid) $)$ $P(" l o v e d " \mid \Theta) P(" i t " \mid ~ ;)$

	\ddots	\because
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\Theta) P($ "my" | $)$) $P($ "grandson" | $)$ $P(" l o v e d " \mid \Theta) P(" i t " \mid ~ ;)$

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\Theta) P($ "my" | $)$) $P($ "grandson" | $)$ $P(" l o v e d " \mid \Theta) P(" i t " \mid ~ ;)$

© 0.00014112

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

 $P($ "loved" \mid) $P($ "it" \mid) $)$

00	0.57
0.49	0

;) 0.00014112

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$\left.P()^{\circ}\right) P($ "my" \mid ©) $P($ "grandson" \mid ©) $P($ "loved" \mid)) $P($ "it" \mid) $)$

;) 0.00014112

	\ddots	\because
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P($) $) P($ "my" \mid © $) P($ "grandson" \mid ©) $P($ "loved" \mid)) $P($ "it" \mid) $)$

© 0.00014112

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\ominus) P(" \mathrm{my}$ " $\mid \odot) P($ "grandson" $\mid \odot)$ $P($ "loved" \mid © $) P(" i t " \mid \odot)$

;)	©
0.49	0.51

:) 0.00014112 -0.00006528

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\because) P($ "my" | ©) $P($ "grandson" $\mid \odot)$ $P($ "loved" \mid ©) $P(" i t " \mid \odot)$

;	©
0.49	0.51

: 0.00014112 -0.00006528

	\ddots	θ
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$\left.P()^{\circ}\right) P($ "my" \mid ©) $P($ "grandson" \mid ©) $P($ "loved" \mid)) $P($ "it" \mid © $)$

\because	\because
0.49	0.51

0.6837
0.3163

	\ddots	\because
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P($) $) P($ "my" \mid ©) $P($ "grandson" \mid ©) $P($ "loved" \mid)) $P($ "it" \mid) $)$

	\ddots	\ddots
my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

$P($) $) P($ "my" \mid ©) $P($ "grandson" \mid ©) $P($ "loved" \mid)) $P($ "it" \mid) $)$

	\ddots	\ddots
my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

$P(\because) P($ "my" | ©) $P($ "grandson" $\mid \odot)$ $P($ "loved" \mid © $) P(" i t " \mid \odot)$

;	©
0.49	0.51

;) 0.00000000
-0.00006528

	θ	\ddots
my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

additive smoothing

adding a value α to each value in our distribution to smooth the data

Laplace smoothing

adding 1 to each value in our distribution: pretending we've seen each value one more time than we actually have

Word Representation

"He wrote a book."

he

$$
[1,0,0,0]
$$

$$
\text { wrote }[0,1,0,0]
$$

$$
\mathrm{a} \quad[0,0,1,0]
$$

$$
\operatorname{book}[0,0,0,1]
$$

one-hot representation

representation of meaning as a vector with a single 1, and with other values as 0

"He wrote a book."

he

$$
[1,0,0,0]
$$

$$
\text { wrote }[0,1,0,0]
$$

$$
\mathrm{a} \quad[0,0,1,0]
$$

$$
\operatorname{book}[0,0,0,1]
$$

"He wrote a book."

he

$$
[1,0,0,0,0,0,0, \ldots]
$$

wrote $[0,1,0,0,0,0,0, \ldots]$
a
book
[0,
0,1,
0,0 ,
0,
0 ,
-••]
[0, 0, 0, 1,
0 ,
0, 0,
...]

$$
\begin{aligned}
& \text { "He wrote a book." } \\
& \text { "He authored a novel." }
\end{aligned}
$$

wrote $\quad[0,1,0,0,0,0,0, \ldots]$ authored $[0,0,0,0,1,0,0, \ldots]$
book
$[0,0,0,1,0,0,0, \ldots]$ novel $\quad[0,0,0,0,0,0,1, \ldots]$

distributed representation

 representation of meaning distributed across multiple values
"He wrote a book."

he

$$
[-0.34,-0.08,0.02,-0.18,0.22, \ldots]
$$

wrote $[-0.27,0.40,0.00,-0.65,-0.15, \ldots]$
a $\quad[-0.12,-0.25,0.29,-0.09,0.40, \ldots]$
book $[-0.23,-0.16,-0.05,-0.57,0.05, \ldots]$

"You shall know a word by the company it keeps."

J. R. Firth, 1957

for breakfast
 he ate

for	lunch	he	ate

for	dinner	he	ate

word2vec

model for generating word vectors

Neural Networks

input

English

 French

The only light in the room came from the lamp

La pièce n'était éclairée que par la lampe placée sur la table où je lisais.

Attention

			the	capital	is	Boston
,	+	+		+	$+$	
\times	\times	\times	\times	\times	\times	
0.04	0.02	0.01	0.28	0.03	0.62	
what	is	the	capital	of	Massachusetts	

Adapted from Bahdanau et al. 2015. Neural machine translation by jointly learning to align and translate

Transformers

input sequence

$+\quad \longrightarrow \underset{\text { Self-Attention }}{\longrightarrow} \longrightarrow$ Neural Network \longrightarrow

Language

Artificial Intelligence

Search

$$
P \rightarrow Q
$$
 Knowledge

Uncertainty

Optimization

Learning

Neural Networks

Language

Introduction to
 Artificial Intelligence
 with Python

