Introduction to Artificial Intelligence with Python

Language

Natural Language Processing

Natural Language Processing

- automatic summarization
- information extraction
- machine translation
- question answering
- text classification
- •

Syntax

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."

"Just before Sherlock Holmes nine o'clock stepped briskly the room."

"I saw the man on the mountain with a telescope."

Semantics

"Just before nine o'clock Sherlock Holmes stepped briskly into the room."

"A few minutes before nine, Sherlock Holmes walked quickly into the room."

"Colorless green ideas sleep furiously."

Natural Language Processing

formal grammar a system of rules for generating sentences in a language

Context-Free Grammar

she

the

city

N She

Saw

D | the

N

 $D \rightarrow the$ a an ... $V \rightarrow saw$ ate walked ... $P \rightarrow to$ on over ... $ADJ \rightarrow blue$ busy old ...

$N \rightarrow she$ | city | car | Harry | ...

$\mathsf{NP} \to \mathsf{N} \mathsf{D} \mathsf{N}$

$\mathsf{NP} \to \mathsf{N} \mathsf{D} \mathsf{N}$

$\mathsf{NP} \to \mathsf{N} \mathsf{D} \mathsf{N}$

$\mathsf{VP} \to \mathsf{V} \mathsf{VP} \mathsf{VP}$

$\bigvee P$ Walked

$\mathsf{VP} \to \mathsf{V} \mathsf{VP} \mathsf{VP}$

$S \rightarrow NP VP$

nltk

n-gram a contiguous sequence of *n* items from a sample of text

tokenization

the task of splitting a sequence of characters into pieces (tokens)
Markov Chains

Text Categorization

"My grandson loved it! So much fun!"

long time."

"Product broke after a few days."

"One of the best games I've played in a

"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

• •

long time."

"Product broke after a few days."

"One of the best games I've played in a

"Kind of cheap and flimsy, not worth it."

•••

"My grandson loved it! So much fun!"

long time."

"Product broke after a few days."

"One of the best games I've played in a

"Kind of cheap and flimsy, not worth it."

bag-of-words model model that represents text as an unordered

model that represent collection of words

Naive Bayes

Bayes' Rule

$P(b \ a) = \frac{P(a \ b) \ P(b)}{P(b \ a)}$

P(Negative)

P(Positive)

"My grandson loved it!"

P(e | "my grandson loved it")

$P(\ensuremath{\in}\ensuremath{\mid}\ensuremath{$

$P(\bigcirc | "my", "grandson", "loved", "it")$

$P(\ensuremath{\in}\ensuremath{\in}\ensuremath{\mid}\ensuremath{:}\ensuremath{$

equal to

P("my", "grandson", "loved", "it" | <math>e) P(e)

P("my", "grandson", "loved", "it")

$P("my", "grandson", "loved", "it" | <math>\Theta$) $P(\Theta)$

$P(\ensuremath{\in}\ensuremath{\in}\ensuremath{\mid}\ensuremath{\in}\ensuremath{\mid}\ensuremath{$

proportional to

P(\estimate, "my", "grandson", "loved", "it")

$P(\ensuremath{\in}\ensuremath{\in}\ensuremath{\mid}\ensuremath{:}\ensuremath{$

proportional to

$P(\ensuremath{\ensuremath{\mathbb{P}}}\xspace | "my", "grandson", "loved", "it")$

naively proportional to

$P(\textcircled{\begin{subarray}{c}})P("my" | \textcircled{\begin{subarray}{c}})P("grandson" | \textcircled{\begin{subarray}{c}})\\P("loved" | \textcircled{\begin{subarray}{c}})P("it" | \textcircled{\begin{subarray}{c}})\\ \end{array}\right)$

number of positive samples

number of total samples

number of positive samples with "loved"

number of positive samples

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.00014112

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.00014112

mу	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

Ø.00014112 Ø.0006528

mу	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

Ø.00014112 Ø.0006528

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.6837 0.3163

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

ту	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

ту	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

O.00000000 O.00006528

ту	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

additive smoothing adding a value α to each value in our distribution to smooth the data

Laplace smoothing

adding 1 to each value in our distribution: pretending we've seen each value one more time than we actually have

Word Representation

"He wrote a book."

he [1, 0, 0, 0] wrote [0, 1, 0, 0] a [0, 0, 1, 0] book [0, 0, 0, 1]

one-hot representation

representation of meaning as a vector with a single 1, and with other values as O

"He wrote a book."

he [1, 0, 0, 0] wrote [0, 1, 0, 0] a [0, 0, 1, 0] book [0, 0, 0, 1]

"He wrote a book."

he [1, 0, 0, 0, 0, 0, 0, ...] wrote [0, 1, 0, 0, 0, 0, 0, ...] a [0, 0, 1, 0, 0, 0, 0, ...] book [0, 0, 0, 1, 0, 0, 0, ...]

"He wrote a book." "He authored a novel." wrote [0, 1, 0, 0, 0, 0, 0, ...] authored [0, 0, 0, 0, 1, 0, 0, ...] book [0, 0, 0, 1, 0, 0, 0, ...] novel [0, 0, 0, 0, 0, 0, 1, ...]

distributed representation representation of meaning distributed across multiple values

"He wrote a book."

he [-0.34, -0.08, 0.02, -0.18, 0.22, ...] Wrote [-0.27, 0.40, 0.00, -0.65, -0.15, ...] a [-0.12, -0.25, 0.29, -0.09, 0.40, ...] book [-0.23, -0.16, -0.05, -0.57, 0.05, ...]

"You shall know a word by the company it keeps."

J. R. Firth, 1957

for

breakfast

word2vec model for generating word vectors

breakfast

dinner

book memoir

lunch

nove

breakfast

dinner

lunch

book •

novel

king - man

man

king - man

woman

king - man

man

queen

king - man

woman

Neural Networks

output

word

English

lamp

The only light in the room came from the lamp upon the table at which I had been reading.

What is the capital of Massachusetts?

The capital is Boston.

what İS the

capital

hidden state

what İS the

capital

capital

of

Massachusetts

<end>

V

Ļ

The

capital

of

Massachusetts

<end>

V

The

<end>

The

capital

is

capital

is

Boston

<end>

The

capital

is

capital

is

Boston
The

capital

is

Boston

capital

Boston

output sequence

output sequence

output sequence

output sequence

output sequence

output sequence

Attention

what is the

capital

İS

capital

Massachusetts

capital

İS

tal of Massachusetts

capital

is

╉ ╉ × × X 0.28 0.03 0.62 of

Massachusetts

capital

İS

Boston

output sequence

	The	agreement	UO	the	European	Economic	Area	Was	signed	<u> </u>	August
匚′											
accord											
SUr											
la											
zone											
économique											
européenne											
B											
été											
signé											
en											
août											
1992											
<end></end>											

Adapted from Bahdanau et al. 2015. Neural machine translation by jointly learning to align and translate

output sequence

Transformers

6 input positional encoding word

Self-Attention

encoded representation

+ Self-Attention input positional encoding word

encoded representation

13 Self-Attention input positional encoding word

encoded representation

output

Language

Artificial Intelligence

Search

Knowledge

$\begin{array}{c} P \rightarrow Q \\ P \\ \end{array} \\ \end{array}$

Uncertainty

Optimization

Learning

Neural Networks

Language

Introduction to Artificial Intelligence with Python