
Tommy MacWilliam, tommy@serenade.ai

Software Engineering
CS50 for MBAs

mailto:tommy@serenade.ai

Software Engineering

Development Velocity

Development Velocity
Engineering work done per unit time

Development Velocity
Includes the time to:

• Ship features

• Fix bugs

• Deal with legacy code

• Onboard new engineers

• Coordinate across teams

Build

Test

Launch

Build
Test

Launch

Version Control

Commits
Logical groupings of changes

• “Add support for X feature”

• “Update docs to include Y”

• “Fix Z bug in sign-up flow”

Commit Hash

ab2b0 7d65912f88

Add support
for X feature

Update docs
to include Y

Fix Z bug in
sign-up flow

ab2b0 7d65912f88

85e74 da32c3e16f

A

B

94105

Merge Conflict

def show_profile():

 show_photo()

 show_name()

def page():

 show_profile()

def show_profile():

 show_photo()

 show_friends()

def page():

 show_profile()

Code Reviews

Architecture

Monolith vs. Microservices

Monolith vs. Microservices
Monolith

• Single repository

• Tight coupling

• Unified standards

• Shared tooling

• Google, Facebook

• Many repositories

• Hard boundaries

• Per-service standards

• Service-specific tooling

• Uber, Netflix

Microservices

Tradeoffs

Code Quality

Technical Debt

Technical Debt

• Cutting corners

• Patching old systems

• Context loss

DRY

DRY
Don’t Repeat Yourself

def display_items():

 items = get_inventory()

 for item in items:

 print(f"Price: {item['price']}")

def display_cart():

 items = get_cart()

 for item in items:

 print(f"Price: {item['price']}")

def display(items):

 for item in items:

 print(f"Price: {item['price']}")

def display_items():

 display(get_inventory())

def display_cart():

 display(get_cart())

Abstractions

Abstractions

• Getting data from a database

• Formatting data for an API

• Communicating with servers

• Handling errors

WET

WET
Write Everything Twice

Donald Knuth, a better developer than I will ever be

“Premature optimization is the root

of all evil”

Solutions

The Six-Month Rule

• How long will this take?

• How much time will it save?

• Does the break-even happen within 6 months?

Cleanup days

Expiration dates

Tradeoffs

Build

Test
Launch

Software Testing

Unit Testing

• Test a single piece of functionality

• Fully independent tests

• Runs isolated code

def test_upvote():

 question = create_question()

 assert question["upvotes"] == 0

 upvote_question(question)

 assert question["upvotes"] == 1

Integration Testing

• Testing an entire flow

• Lots of dependencies

• Can run on real data

def test_add_question():

 load_url("https://quora.com")

 log_in("tommy", "password")

 click("Create Question")

 type("Why is the sky blue?")

 ...

Regression Testing

• New changes shouldn’t break existing functionality

• Test other features with your new code

Acceptance Testing

• Does this meet the spec?

• Beta programs, insider releases

Performance Testing

• Simulate high system load

• Simulate components failing

A/B Testing

Generate a hypothesis

Implement the experiment

Measure impact

Generate a hypothesis
Implement the experiment

Measure impact

A B

“It’s easier to see what pages are
available”

“It’s more obvious how to add a question”

“Swipe gestures are trending right now”

Generate a hypothesis

Implement the experiment
Measure impact

A B

70% 30%

define_experiment('tab_bar',
 buckets=[
 (range(0, 30), True),
 (range(30, 100), False)
]
)

def render():
 if experiment.get('tab_bar'):
 return render_with_bar()
 else:
 return render_without_bar()

Generate a hypothesis

Implement the experiment

Measure impact

Analytics

• Google Analytics

• Firebase

• Mixpanel

• Optimizely

• In-house

Key Metrics

A B

Key Metrics

• Engagement?

• Performance?

• Cost?

• Complexity?

Tradeoffs

Build

Test

Launch

Deployment Strategies

Manual

Scheduled

Continuous

Manual
Scheduled

Continuous

Manual

Scheduled
Continuous

Manual

Scheduled

Continuous

Company 1

• B2B company for medical records

• Contracts include reliability SLAs

• 50 employees

Company 1 Strategy: Scheduled

• Tuesday: Code freeze

• Tuesday night: QA team tests

• Wednesday: Staged rollout to “insider” customers

• Thursday: Wide rollout

• Friday: Release critical patches

Company 2

• Consumer social network

• Ad-based revenue

• 5000 employees

Company 2 Strategy: Continuous

• Every few hours:

• Full suite of tests runs on latest code

• Employee version switches to latest code for an hour

• Release if no red flags

• Bugs? Fix in the next release

Tradeoffs

Q&A

Tommy MacWilliam, tommy@serenade.ai

Software Engineering
CS50 for MBAs

mailto:tommy@serenade.ai

