
Lab 5
CS50 for MBAs

carterzenke.me/lab

http://carterzenke.me/lab

movies.db

🍿

IMDb
Querying a database of movies

Schema
How data is organized in a database

wget https://cdn.cs50.net/hbs/2023/spring/labs/5/movies.zip

sqlite3 DB_NAME$

sqlite3 movies.db$

...sqlite>

.schemasqlite>

movies.db

movies.db

movies

stars

people

ratings

directors

movies.db

stars people ratings directors

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

movies.db

movies stars ratings directors

people
id name birth

158 Tom Hanks 1956

5562 Owen Wilson 1968

68338 Kristen Bell 1980

...

movies.db

movies people ratings directors

stars
movie_id person_id

114709 158

3606752 5562

2294629 68338

... ...

Queries 1–5

SELECT
WHERE
LIKE
ORDER BY

SELECT column
FROM table
WHERE condition;

SELECT title
FROM movies
WHERE title = 'Cars 3';

SELECT rating, movie_id
FROM ratings
WHERE rating >= 9.8;

SELECT rating, movie_id
FROM ratings
WHERE rating >= 9.8 AND votes > 100;

SELECT column
FROM table
WHERE column LIKE pattern;

SELECT title
FROM movies
WHERE title LIKE 'Cars%';

SELECT title
FROM movies
WHERE title LIKE '%Cars';

SELECT title
FROM movies
WHERE title LIKE '%Cars%';

SELECT column
FROM table
WHERE condition
ORDER BY column;

SELECT rating, movie_id
FROM ratings
WHERE rating > 9.8
ORDER BY rating;

SELECT rating, movie_id
FROM ratings
WHERE rating > 9.8
ORDER BY rating ASC;

SELECT rating, movie_id
FROM ratings
WHERE rating > 9.8
ORDER BY rating DESC;

SELECT rating, movie_id
FROM ratings
WHERE rating > 9.8
ORDER BY rating DESC, movie_id;

Queries 6–10

Aggregate Functions
Keywords to calculate data from multiple rows

SELECT column
FROM table
WHERE condition;

SELECT COUNT(column)
FROM table
WHERE condition;

SELECT AVG(column)
FROM table
WHERE condition;

SELECT MIN(column)
FROM table
WHERE condition;

SELECT MIN(rating)
FROM ratings;

Combining Tables
Methods to reference data from other tables

SELECTs (nested)
JOINs

SELECTs (nested)
JOINs

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

SELECT id FROM movies WHERE title = "Cars 3";sqlite>

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

SELECT id FROM movies WHERE title = "Cars 3";sqlite>

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

SELECT rating FROM ratings WHERE movie_id = 3606752;sqlite>

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

SELECT rating FROM ratings WHERE movie_id = 3606752;sqlite>

SELECT rating FROM ratings WHERE movie_id = ?;sqlite>

SELECT rating
FROM ratings
WHERE movie_id = ?;

sqlite>

SELECT rating
FROM ratings
WHERE movie_id = (
 SELECT id
 FROM movies
 WHERE title = "Cars 3"
);

sqlite>

SELECT rating
FROM ratings
WHERE movie_id = (
 SELECT id
 FROM movies
 WHERE title = "Cars 3"
);

sqlite>

SELECT rating
FROM ratings
WHERE movie_id = (
 3606752
);

sqlite>

SELECTs (nested)
JOINs

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

movies
id title year

114709 Toy Story 1995

3606752 Cars 3 2017

2294629 Frozen 2013

...

ratings
movie_id rating

114709 8.3

3606752 6.7

2294629 7.4

... ...

movies JOIN ratings
id title year movie_id rating

114709 Toy Story 1995 114709 8.3

3606752 Cars 3 2017 3606752 6.7

2294629 Frozen 2013 2294629 7.4

...

movies JOIN ratings
id title year rating

114709 Toy Story 1995 8.3

3606752 Cars 3 2017 6.7

2294629 Frozen 2013 7.4

...

*movie_id column hidden for visualization

Queries 11–13

LIMIT
Capping the number of rows returned

SELECT column
FROM table
WHERE condition
LIMIT number;

SELECT column
FROM table
WHERE condition
ORDER BY column
LIMIT number;

SELECT movie_id, rating
FROM ratings
WHERE votes > 100
ORDER BY rating DESC
LIMIT 10;

INTERSECT
Returning common rows between 2 queries

SELECT column
FROM table
WHERE condition;

SELECT column
FROM table
WHERE condition
INTERSECT
SELECT column
FROM table
WHERE condition;

Indexes
Strategically speeding up queries

CREATE INDEX indexName ON
tableName(columnName)

Submission
• Submit code files to Gradescope by Thursday,

February 16, 3:10 PM.

• Graded based on completion, but please double
check to be sure your files are named correctly:

• 1.sql not 1 (1).sql

