
Engineering at Scale
A Breadth-First Overview

Development Velocity

Development Velocity
Engineering work done per unit time

Development Velocity
Includes the time to:

• Ship features

• Fix bugs

• Deal with legacy code

• Onboard new engineers

• Coordinate across teams

Build
Test
Launch

Build
Test
Launch

Version Control

Commits
Logical grouping of changes

• “Add support for X feature”

• “Update docs to include Y”

• “Fix Z bug in sign-up flow”

Commit Hash

ab2b0 7d65912f88

Add support
for X feature

Update docs
to include Y

Fix Z bug in
sign-up flow

ab2b0 7d65912f88

85e74 da32c3e16f

A

B

11217

def show_profile():
 show_photo()
 show_name()

def page():
 show_profile()

def show_profile():
 show_photo()
 show_friends()

def page():
 show_profile()

Developer 1 Developer 2

Merge Conflict

def show_profile():
 show_photo()
 show_name()

def page():
 show_profile()

def show_profile():
 show_photo()
 show_friends()

def page():
 show_profile()

Developer 1 Developer 2

Code Reviews

Architecture

Monolith vs. Microservices

Monolith vs. Microservices
Monolith

• Single repository

• Tight coupling

• Unified standards

• Shared tooling

• Google, Facebook

• Many repositories

• Hard boundaries

• Per-service standards

• Service-specific tooling

• Uber, Netflix

Microservices

Tradeoffs

Code Quality

Technical Debt

Technical Debt

• Cutting corners

• Patching old systems

• Context loss

DRY

DRY
Don’t Repeat Yourself

def display_items():
 items = get_inventory()
 for item in items:
 print(f"Price: {item['price']}")

def display_cart():
 items = get_cart()
 for item in items:
 print(f"Price: {item['price']}")

def display(items):
 for item in items:
 print(f"Price: {item['price']}")

def display_items():
 display(get_inventory())

def display_cart():
 display(get_cart())

Abstractions

Abstractions

• Getting data from a database

• Formatting data for an API

• Communicating with servers

• Handling errors

WET

WET
Write Everything Twice

“Premature optimization is the root
of all evil”

Solutions

The Six-Month Rule

• How long will this take?

• How much time will it save?

• Does the break-even happen within 6 months?

Cleanup days

Expiration dates

Migrations

Migrations
Replacing the screws on a rocket after you’ve
already launched it

Stepping stones, not milestones

Tradeoffs

Build
Test
Launch

Software Testing

Unit Testing

• Test a single piece of functionality

• Fully independent tests

• Runs isolated code

def test_share():
 file = create_file()
 assert file["editors"] == 1
 share_file(file, user)
 assert file["editors"] == 2

Integration Testing

• Testing an entire flow

• Lots of dependencies

• Can run on real data

def test_new_file():
 load_url("https://figma.com")
 log_in("tommy", "password")
 click("New File")
 type("My Filename")
 ...

Regression Testing

• New changes shouldn’t break existing functionality

• Test other features with your new code

Acceptance Testing

• Does this meet the spec?

• Beta programs, insider releases

Performance Testing

• Simulate high system load

• Simulate components failing

A/B Testing

Generate a hypothesis
Implement the experiment
Measure impact

Generate a hypothesis
Implement the experiment
Measure impact

A B

— Your engineer, probably

“It’s easier to see what pages are
available”

— Your data scientist, probably

“It’s more obvious how to add a question,
which will lead to more questions”

— Your designer, probably

“Swipe gestures are trending right now”

Generate a hypothesis
Implement the experiment
Measure impact

A B

70% 30%

define_experiment('tab_bar',
 buckets=[
 (range(0, 30), True),
 (range(30, 100), False)
]
)

def render():
 if experiment.get('tab_bar'):
 return render_with_bar()
 else:
 return render_without_bar()

Generate a hypothesis
Implement the experiment
Measure impact

Analytics

• Firebase

• Mixpanel

• LaunchDarkly

• Statsig

• In-house

Key Metrics

A B

Key Metrics

• Engagement?

• Performance?

• Cost?

• Complexity?

Tradeoffs

Build
Test
Launch

Deployment Strategies

Manual
Scheduled
Continuous

Manual
Scheduled
Continuous

Manual
Scheduled
Continuous

Manual
Scheduled
Continuous

Company 1

• B2B company for medical records

• Contracts include reliability SLAs

• 50 employees

Company 1 Strategy: Scheduled

• Tuesday: Code freeze

• Tuesday night: QA team tests

• Wednesday: Staged rollout to “insider” customers

• Thursday: Wide rollout

• Friday: Release critical patches

Company 2

• Consumer social network

• Ad-based revenue

• 5000 employees

Company 2 Strategy: Continuous

• Every few hours:

• Full suite of tests runs on latest code

• Employee version switches to latest code for an hour

• Release if no red flags

• Bugs? Fix in the next release

Tradeoffs

Q&A

Engineering at Scale
A Breadth-First Overview

