
 1 # Find faces in picture

 2 # https://github.com/ageitgey/face_recognition/blob/master/examples/find_faces_in_picture.py

 3

 4 from PIL import Image

 5 import face_recognition

 6

 7 # Load the jpg file into a numpy array

 8 image = face_recognition.load_image_file("office.jpg")

 9

10 # Find all the faces in the image using the default HOG-based model.

11 # This method is fairly accurate, but not as accurate as the CNN model and not GPU accelerated.

12 # See also: find_faces_in_picture_cnn.py

13 face_locations = face_recognition.face_locations(image)

14

15 for face_location in face_locations:

16

17 # Print the location of each face in this image

18 top, right, bottom, left = face_location

19

20 # You can access the actual face itself like this:

21 face_image = image[top:bottom, left:right]

22 pil_image = Image.fromarray(face_image)

23 pil_image.show()

faces/detect.py

 1 # Identify and draw box on David

 2 # https://github.com/ageitgey/face_recognition/blob/master/examples/identify_and_draw_boxes_on_faces.py

 3

 4 import face_recognition

 5 import numpy as np

 6 from PIL import Image, ImageDraw

 7

 8 # Load a sample picture and learn how to recognize it.

 9 known_image = face_recognition.load_image_file("toby.jpg")

10 encoding = face_recognition.face_encodings(known_image)[0]

11

12 # Load an image with unknown faces

13 unknown_image = face_recognition.load_image_file("office.jpg")

14

15 # Find all the faces and face encodings in the unknown image

16 face_locations = face_recognition.face_locations(unknown_image)

17 face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

18

19 # Convert the image to a PIL-format image so that we can draw on top of it with the Pillow library

20 # See http://pillow.readthedocs.io/ for more about PIL/Pillow

21 pil_image = Image.fromarray(unknown_image)

22

23 # Create a Pillow ImageDraw Draw instance to draw with

24 draw = ImageDraw.Draw(pil_image)

25

26 # Loop through each face found in the unknown image

27 for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):

28

29 # See if the face is a match for the known face(s)

30 matches = face_recognition.compare_faces([encoding], face_encoding)

31

32 # Use the known face with the smallest distance to the new face

33 face_distances = face_recognition.face_distance([encoding], face_encoding)

34 best_match_index = np.argmin(face_distances)

35 if matches[best_match_index]:

36

37 # Draw a box around the face using the Pillow module

38 draw.rectangle(((left - 20, top - 20), (right + 20, bottom + 20)), outline=(0, 255, 0), width=20)

39

40 # Remove the drawing library from memory as per the Pillow docs

41 del draw

42

faces/recognize.py

43 # Display the resulting image

44 pil_image.show()

faces/recognize.py

1 # Demonstrates a function with a positional argument

2

3 print("hello, world")

functions/hello0.py

1 # Demonstrates concatenation of strings

2

3 name = input("What's your name? ")

4 print("hello, " + name)

functions/hello1.py

1 # Demonstrates a function with two positional arguments

2

3 name = input("What's your name? ")

4 print("hello,", name)

functions/hello2.py

1 # Demonstrates a format string

2

3 name = input("What's your name? ")

4 print(f"hello, {name}")

functions/hello3.py

1 # Demonstrates str functions

2

3 name = input("What's your name? ")

4 first, last = name.split(" ")

5 print(f"hello, {first}")

functions/hello4.py

1 # Demonstrates addition

2

3 x = 1

4 y = 2

5

6 z = x + y

7

8 print(z)

functions/calculator0.py

1 # Demonstrates (unintended) concatenation of strings

2

3 # Prompt user for two integers

4 x = input("What's x? ")

5 y = input("What's y? ")

6

7 # Print sum

8 z = x + y

9 print(z)

functions/calculator1.py

 1 # Demonstrates conversion from str to int

 2

 3 x = input("What's x? ")

 4 x = int(x)

 5 y = input("What's y? ")

 6 y = int(y)

 7

 8 z = x + y

 9

10 print(z)

functions/calculator2.py

1 # Demonstrates nesting of function calls

2

3 x = int(input("What's x? "))

4 y = int(input("What's y? "))

5

6 z = x + y

7

8 print(z)

functions/calculator3.py

1 # Demonstrates conversion of str to float

2

3 x = float(input("What's x? "))

4 y = float(input("What's y? "))

5

6 z = x + y

7

8 print(z)

functions/calculator4.py

1 # Demonstrates fewer variables

2

3 x = float(input("What's x? "))

4 y = float(input("What's y? "))

5

6 print(round(x + y))

functions/calculator5.py

1 # Demonstrates floating-point imprecision (e.g., 1.1 + 2.2)

2

3 x = float(input("What's x? "))

4 y = float(input("What's y? "))

5

6 z = x + y

7

8 print(f"{z:.50f}")

functions/calculator6.py

1 # Demonstrates floating-point imprecision (e.g., 1 / 3)

2

3 x = float(input("What's x? "))

4 y = float(input("What's y? "))

5

6 z = x / y

7

8 print(f"{z:.50f}")

functions/calculator7.py

1 # Demonstrates multiple (identical) function calls

2

3 print("meow")

4 print("meow")

5 print("meow")

loops/cat0.py

1 # Demonstrates a for loop, using range

2

3 for i in range(3):

4 print("meow")

loops/cat1.py

1 # Demonstrates definining a function

2

3 def meow():

4 print("meow")

5

6

7 for i in range(3):

8 meow()

loops/cat2.py

1 # Says hello

2

3 import pyttsx3

4

5 engine = pyttsx3.init()

6 engine.say("hello, world")

7 engine.runAndWait()

speech/speech0.py

1 # Says hello

2

3 import pyttsx3

4

5 engine = pyttsx3.init()

6 name = input("What's your name? ")

7 engine.say(f"hello, {name}")

8 engine.runAndWait()

speech/speech1.py

	faces/detect.py
	faces/recognize.py
	functions/hello0.py
	functions/hello1.py
	functions/hello2.py
	functions/hello3.py
	functions/hello4.py
	functions/calculator0.py
	functions/calculator1.py
	functions/calculator2.py
	functions/calculator3.py
	functions/calculator4.py
	functions/calculator5.py
	functions/calculator6.py
	functions/calculator7.py
	loops/cat0.py
	loops/cat1.py
	loops/cat2.py
	speech/speech0.py
	speech/speech1.py

