
 1 # Logical operators
 2
 3 # Prompt user to agree
 4 s = input("Do you agree? ")
 5
 6 # Check whether agreed
 7 if s == "Y" or s == "y":
 8 print("Agreed.")
 9 elif s == "N" or s == "n":
10 print("Not agreed.")

agree0.py

 1 # Logical operators, using lists
 2
 3 # Prompt user to agree
 4 s = input("Do you agree? ")
 5
 6 # Check whether agreed
 7 if s.lower() in ["y", "yes"]:
 8 print("Agreed.")
 9 elif s.lower() in ["n", "no"]:
10 print("Not agreed.")

agree1.py

 1 # Logical operators
 2
 3 # Prompt user for answer
 4 c = input("Answer: ")
 5
 6 # Check answer
 7 if c == "Y" or c == "y":
 8 print("yes")
 9 elif c == "N" or c == "n":
10 print("no")

answer.py

 1 # Conditions and relational operators
 2
 3 # Prompt user for x
 4 x = int(input("x: "))
 5
 6 # Prompt user for y
 7 y = int(input("y: "))
 8
 9 # Compare x and y
10 if x < y:
11 print("x is less than y")
12 elif x > y:
13 print("x is greater than y")
14 else:
15 print("x is equal to y")

conditions.py

1 # Opportunity for better design
2
3 print("cough")
4 print("cough")
5 print("cough")

cough0.py

1 # Better design
2
3 for i in range(3):
4 print("cough")

cough1.py

 1 # Abstraction
 2
 3
 4 def main():
 5 for i in range(3):
 6 cough()
 7
 8
 9 def cough():
10 print("cough")
11
12
13 main()

cough2.py

 1 # Abstraction with parameterization
 2
 3
 4 def main():
 5 cough(3)
 6
 7
 8 def cough(n):
 9 for i in range(n):
10 print("cough")
11
12
13 main()

cough3.py

 1 # Find faces in picture
 2 # https://github.com/ageitgey/face_recognition/blob/master/examples/find_faces_in_picture.py
 3
 4 from PIL import Image
 5 import face_recognition
 6
 7 # Load the jpg file into a numpy array
 8 image = face_recognition.load_image_file("yale.jpg")
 9
10 # Find all the faces in the image using the default HOG-based model.
11 # This method is fairly accurate, but not as accurate as the CNN model and not GPU accelerated.
12 # See also: find_faces_in_picture_cnn.py
13 face_locations = face_recognition.face_locations(image)
14
15 for face_location in face_locations:
16
17 # Print the location of each face in this image
18 top, right, bottom, left = face_location
19
20 # You can access the actual face itself like this:
21 face_image = image[top:bottom, left:right]
22 pil_image = Image.fromarray(face_image)
23 pil_image.show()

faces/detect.py

 1 # Identify and draw box on David
 2 # https://github.com/ageitgey/face_recognition/blob/master/examples/identify_and_draw_boxes_on_faces.py
 3
 4 import face_recognition
 5 import numpy as np
 6 from PIL import Image, ImageDraw
 7
 8 # Load a sample picture and learn how to recognize it.
 9 known_image = face_recognition.load_image_file("malan.jpg")
10 encoding = face_recognition.face_encodings(known_image)[0]
11
12 # Load an image with unknown faces
13 unknown_image = face_recognition.load_image_file("harvard.jpg")
14
15 # Find all the faces and face encodings in the unknown image
16 face_locations = face_recognition.face_locations(unknown_image)
17 face_encodings = face_recognition.face_encodings(unknown_image, face_locations)
18
19 # Convert the image to a PIL-format image so that we can draw on top of it with the Pillow library
20 # See http://pillow.readthedocs.io/ for more about PIL/Pillow
21 pil_image = Image.fromarray(unknown_image)
22
23 # Create a Pillow ImageDraw Draw instance to draw with
24 draw = ImageDraw.Draw(pil_image)
25
26 # Loop through each face found in the unknown image
27 for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
28
29 # See if the face is a match for the known face(s)
30 matches = face_recognition.compare_faces([encoding], face_encoding)
31
32 # Use the known face with the smallest distance to the new face
33 face_distances = face_recognition.face_distance([encoding], face_encoding)
34 best_match_index = np.argmin(face_distances)
35 if matches[best_match_index]:
36
37 # Draw a box around the face using the Pillow module
38 draw.rectangle(((left - 20, top - 20), (right + 20, bottom + 20)), outline=(0, 255, 0), width=20)
39
40 # Remove the drawing library from memory as per the Pillow docs
41 del draw
42
43 # Display the resulting image
44 pil_image.show()

faces/recognize.py

1 # Says hello to the world
2
3 print("hello, world")

hello0.py

1 # Says hello to someone
2
3 name = input("Name: ")
4 print("hello,", name)

hello1.py

1 # Floating-point imprecision
2
3 print(f"{1/10:.50f}")

imprecision.py

1 # Prints a row of 4 question marks with a loop
2
3 for i in range(4):
4 print("?", end="")
5 print()

mario0.py

1 # Prints a row of 4 question marks without a loop
2
3 print("?" * 4)

mario1.py

1 # Prints a column of 3 bricks with a loop
2
3 for i in range(3):
4 print("#")

mario2.py

1 # Prints a column of 3 bricks without a loop
2
3 print("#\n" * 3, end="")

mario3.py

1 # Prints a 3-by-3 grid of bricks with loops
2
3 for i in range(3):
4 for j in range(3):
5 print("#", end="")
6 print()

mario4.py

 1 # Abstraction and scope
 2
 3
 4 def main():
 5 i = get_positive_int("Positive integer: ")
 6 print(i)
 7
 8
 9 def get_positive_int(prompt):
10 while True:
11 n = int(input(prompt))
12 if n > 0:
13 break
14 return n
15
16
17 main()

positive.py

 1 # Generates a QR code
 2 # https://github.com/lincolnloop/python-qrcode
 3
 4 import qrcode
 5
 6 # Generate QR code
 7 img = qrcode.make("https://youtu.be/oHg5SJYRHA0")
 8
 9 # Save as file
10 img.save("qr.png", "PNG")

qr/qr.py

 1 # Generates a bar chart of three scores
 2
 3 # Get scores from user
 4 score1 = int(input("Score 1: "))
 5 score2 = int(input("Score 2: "))
 6 score3 = int(input("Score 3: "))
 7
 8 # Generate first bar
 9 print("Score 1: ", end="");
10 for i in range(score1):
11 print("#", end="")
12 print()
13
14 # Generate second bar
15 print("Score 2: ", end="");
16 for i in range(score2):
17 print("#", end="")
18 print()
19
20 # Generate third bar
21 print("Score 3: ", end="");
22 for i in range(score3):
23 print("#", end="")
24 print()

scores0.py

	agree0.py
	agree1.py
	answer.py
	conditions.py
	cough0.py
	cough1.py
	cough2.py
	cough3.py
	faces/detect.py
	faces/recognize.py
	hello0.py
	hello1.py
	imprecision.py
	mario0.py
	mario1.py
	mario2.py
	mario3.py
	mario4.py
	positive.py
	qr/qr.py
	scores0.py

