
 1 -- Demonstrates aggregation by groups with GROUP BY
 2 -- Uses longlist.db
 3
 4 -- Finds average rating for each book
 5 SELECT "book_id", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
 6 GROUP BY "book_id";
 7
 8 -- Joins titles
 9 SELECT "title", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
10 JOIN "books" ON "books"."id" = "ratings"."book_id"
11 GROUP BY "book_id";
12
13 -- Chooses books with a rating of 4.0 or higher
14 SELECT "title", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
15 JOIN "books" ON "books"."id" = "ratings"."book_id"
16 GROUP BY "book_id"
17 HAVING "average rating" > 4.0;

groups.sql

 1 -- Demonstrates joining tables with JOIN
 2 -- Uses sea_lions.db
 3
 4 -- Shows all sea lions for which we have data
 5 SELECT * FROM "sea_lions"
 6 JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
 7
 8 -- Shows all sea lions, whether or not we have data
 9 SELECT * FROM "sea_lions"
10 LEFT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
11
12 -- Shows all data, whether or not there are matching sea lions
13 SELECT * FROM "sea_lions"
14 RIGHT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
15
16 -- Shows all data and all sea lions
17 SELECT * FROM "sea_lions"
18 FULL JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
19
20 -- JOINs sea lions and migrations without specifying matching column
21 SELECT * FROM "sea_lions"
22 NATURAL JOIN "migrations";
23
24 -- Uses WHERE after joining a table
25 SELECT * FROM "sea_lions"
26 JOIN "migrations" ON "migrations"."id" = "sea_lions"."id"
27 WHERE "migrations"."distance" > 1500;

joins.sql

 1 -- Demonstrates subqueries
 2 -- Uses longlist.db
 3
 4 -- Finds all books published by MacLehose Press, with hard-coded id
 5 SELECT "id" FROM "publishers" WHERE "publisher" = 'MacLehose Press';
 6
 7 SELECT "title" FROM "books" WHERE "publisher_id" = 12;
 8
 9 -- Finds all books published by MacLehose Press, with a nested query
10 SELECT "title" FROM "books" WHERE "publisher_id" = (
11 SELECT "id" FROM "publishers" WHERE "publisher" = 'MacLehose Press'
12);
13
14 -- Finds all ratings for "In Memory of Memory"
15 SELECT "rating" FROM "ratings" WHERE "book_id" = (
16 SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
17);
18
19 -- Finds average rating for "In Memory of Memory"
20 SELECT AVG("rating") FROM "ratings" WHERE "book_id" = (
21 SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
22);
23
24 -- Finds author who wrote "The Birthday Party"
25 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party';
26
27 SELECT "author_id" FROM "authored" WHERE "book_id" = (
28 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
29);
30
31 SELECT "name" FROM "authors" WHERE "id" = (
32 SELECT "author_id" FROM "authored" WHERE "book_id" = (
33 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
34)
35);
36
37 -- Finds all books by Fernanda Melchor, using IN
38 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor';
39
40 SELECT "book_id" FROM "authored" WHERE "author_id" = (
41 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'
42);

nested.sql

43
44 SELECT "title" FROM "books" WHERE "id" IN (
45 SELECT "book_id" FROM "authored" WHERE "author_id" = (
46 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'
47)
48);
49
50 -- Uses IN to search for multiple authors
51 SELECT "title" FROM "books" WHERE "id" IN (
52 SELECT "book_id" FROM "authored" WHERE "author_id" IN (
53 SELECT "id" FROM "authors" WHERE "name" IN ('Fernanda Melchor', 'Annie Ernaux')
54)
55);

nested.sql

 1 -- Demonstrates set operations
 2 -- Uses longlist.db
 3
 4 -- UNION
 5 -- Selects all authors, labeling as authors
 6 SELECT 'author' AS "profession", "name" FROM "authors";
 7
 8 -- Selects all translators, labeling as translators
 9 SELECT 'translator' AS "profession", "name" FROM "translators";
10
11 -- Combines authors and translators into one result set
12 SELECT 'author' AS "profession", "name" FROM "authors";
13 UNION
14 SELECT 'translator' AS "profession", "name" FROM "translators";
15
16 -- INTERSECT (Assume names are unique)
17 -- Finds authors and translators
18 SELECT "name" FROM "authors"
19 INTERSECT
20 SELECT "name" FROM "translators";
21
22 -- Finds books translated by Sophie Hughes
23 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
24 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
25);
26
27 -- Finds books translated by Margaret Jull Costa
28 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
29 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
30);
31
32 -- Finds intersection of books
33 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
34 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
35)
36 INTERSECT
37 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
38 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
39);
40
41 -- Finds intersection of books
42 SELECT "title" FROM "books" WHERE "id" = (

sets.sql

43 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
44 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
45)
46 INTERSECT
47 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
48 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
49)
50);
51
52 -- EXCEPT (Assume names are unique)
53 -- Finds translators who are not authors
54 SELECT "name" FROM "translators"
55 EXCEPT
56 SELECT "name" FROM "authors";

sets.sql

	groups.sql
	joins.sql
	nested.sql
	sets.sql

