
 1 -- Find average rating for each book
 2 SELECT "book_id", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
 3 GROUP BY "book_id";
 4
 5 -- Join titles
 6 SELECT "title", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
 7 JOIN "books" ON "books"."id" = "ratings"."book_id"
 8 GROUP BY "book_id";
 9
10 -- Choosing books with a rating of 4.0 or higher
11 SELECT "title", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
12 JOIN "books" ON "books"."id" = "ratings"."book_id"
13 GROUP BY "book_id"
14 HAVING "average rating" > 4.0;

groups.sql

 1 -- Show all sea lions for which we have data
 2 SELECT * FROM "sea_lions"
 3 JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
 4
 5 -- Show all sea lions, whether or not we have data
 6 SELECT * FROM "sea_lions"
 7 LEFT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
 8
 9 -- Show all data, whether or not there are matching sea lions
10 SELECT * FROM "sea_lions"
11 RIGHT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
12
13 -- Show all data and all sea lions
14 SELECT * FROM "sea_lions"
15 FULL JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";
16
17 -- JOIN sea lions and migrations without specifying matching column
18 SELECT * FROM "sea_lions"
19 NATURAL JOIN "migrations";
20
21 -- Use WHERE after joining a table
22 SELECT * FROM "sea_lions"
23 JOIN "migrations" ON "migrations"."id" = "sea_lions"."id"
24 WHERE "migrations"."distance" > 1500;

joins.sql

 1 -- Find all books published by MacLehose Press, with hard-coded id
 2 SELECT "id" FROM "publishers" WHERE "publisher" = 'MacLehose Press';
 3
 4 SELECT "title" FROM "books" WHERE "publisher_id" = 12;
 5
 6 -- Find all books published by MacLehose Press, with a nested query
 7 SELECT "title" FROM "books" WHERE "publisher_id" = (
 8 SELECT "id" FROM "publishers" WHERE "publisher" = 'MacLehose Press'
 9);
10
11 -- Find all ratings for "In Memory of Memory"
12 SELECT "rating" FROM "ratings" WHERE "book_id" = (
13 SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
14);
15
16 -- Find average rating for "In Memory of Memory"
17 SELECT AVG("rating") FROM "ratings" WHERE "book_id" = (
18 SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
19);
20
21 -- Which author wrote "The Birthday Party"?
22 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party';
23
24 SELECT "author_id" FROM "authored" WHERE "book_id" = (
25 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
26);
27
28 SELECT "name" FROM "authors" WHERE "id" = (
29 SELECT "author_id" FROM "authored" WHERE "book_id" = (
30 SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
31)
32);
33
34 -- Find all books by Fernanda Melchor, using IN
35 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor';
36
37 SELECT "book_id" FROM "authored" WHERE "author_id" = (
38 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'
39);
40
41 SELECT "title" FROM "books" WHERE "id" IN (
42 SELECT "book_id" FROM "authored" WHERE "author_id" = (

nested.sql

43 SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'
44)
45);
46
47 -- Using IN to search for multiple authors
48 SELECT "title" FROM "books" WHERE "id" IN (
49 SELECT "book_id" FROM "authored" WHERE "author_id" IN (
50 SELECT "id" FROM "authors" WHERE "name" IN ('Fernanda Melchor', 'Annie Ernaux')
51)
52);

nested.sql

 1 -- UNION

 2
 3 -- Select all authors, labeling as authors
 4 SELECT 'author' AS "profession", "name" FROM "authors";
 5
 6 -- Select all translators, labeling as translators
 7 SELECT 'translator' AS "profession", "name" FROM "translators";
 8
 9 -- Combine authors and translators into one result set

10 SELECT 'author' AS "profession", "name" FROM "authors";
11 UNION

12 SELECT 'translator' AS "profession", "name" FROM "translators";
13
14 -- INTERSECT

15 -- Assume names are unique
16
17 -- Find authors and translators
18 SELECT "name" FROM "authors"
19 INTERSECT

20 SELECT "name" FROM "translators";
21
22 -- Find books translated by Sophie Hughes
23 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
24 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
25);
26
27 -- Find books translated by Margaret Jull Costa
28 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
29 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
30);
31
32 -- Find intersection of books
33 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
34 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
35)
36 INTERSECT

37 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
38 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
39);
40
41 -- Find intersection of books
42 SELECT "title" FROM "books" WHERE "id" = (

sets.sql

43 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
44 SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
45)
46 INTERSECT
47 SELECT "book_id" FROM "translated" WHERE "translator_id" = (
48 SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
49)
50);
51
52 -- EXCEPT

53 -- Assume names are unique
54
55 -- Find translators who are not authors
56 SELECT "name" FROM "translators"
57 EXCEPT

58 SELECT "name" FROM "authors";

sets.sql

	groups.sql
	joins.sql
	nested.sql
	sets.sql

