groups.sql

O N O O h W IN =

—_ A
A W N2 © O

-- Find average rating for each book
SELECT "book_id", ROUND(AVG("rating"), 2) AS "average rating" FROM "ratings"
GROUP BY "book_id";

-- Join titles

SELECT "title", ROUND(CAVG("rating"), 2) AS "average rating" FROM "ratings"
JOIN "books" ON "books"."id" = "ratings"."book_id"

GROUP BY "book_id";

-- Choosing books with a rating of 4.0 or higher

SELECT "title", ROUNDCAVG("rating"), 2) AS "average rating" FROM "ratings"
JOIN "books" ON "books"."id" = "ratings"."book_id"

GROUP BY "book_id"

HAVING "average rating" > 4.0;



joins.sql

O N O O h W IN =

N NN NRN—= = O a o 4 a4 a4
A WN 2 © OO0 N Ol wWN - © 0

-- Show all sea lions for which we have data
SELECT * FROM "sea_lions"
JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";

-- Show all sea lions, whether or not we have data
SELECT * FROM "sea_lions"
LEFT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";

-- Show all data, whether or not there are matching sea lions
SELECT * FROM "sea_lions"
RIGHT JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";

-- Show all data and all sea lions
SELECT * FROM "sea_lions"
FULL JOIN "migrations" ON "migrations"."id" = "sea_lions"."id";

-- JOIN sea lions and migrations without specifying matching column
SELECT * FROM "sea_lions"
NATURAL JOIN "migrations";

-- Use WHERE after joining a table

SELECT * FROM "sea_lions"

JOIN "migrations" ON "migrations"."id" = "sea_lions"."id"
WHERE "migrations"."distance" > 1500;



nested.sql

O N O O h W IN =

A A DA WWWWWWWWWWNRNRNNNNONDNONNNNS 2 2 2 o o oo
N = ©® WO U RWN—=©WOWOWNOUNWN-=O©WOWOW-NOOU A WN= O

-- Find all books published by MaclLehose Press, with hard-coded id
SELECT "id" FROM "publishers" WHERE "publisher" = 'MaclLehose Press';

SELECT "title" FROM "books" WHERE "publisher_id" = 12;

-- Find all books published by MaclLehose Press, with a nested query
SELECT "title" FROM "books" WHERE "publisher_id" = (

SELECT "id" FROM "publishers" WHERE "publisher" = 'MacLehose Press'
);

-- Find all ratings for "In Memory of Memory"
SELECT "rating" FROM "ratings" WHERE "book_id" = (

SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
);

-- Find average rating for "In Memory of Memory"
SELECT AVG("rating") FROM "ratings" WHERE "book_id" = (

SELECT "id" FROM "books" WHERE "title" = 'In Memory of Memory'
);
-- Which author wrote "The Birthday Party"?
SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party';

SELECT "author_id" FROM "authored" WHERE "book_id" = (
SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
);

SELECT "name" FROM "authors" WHERE "id" = (
SELECT "author_id" FROM "authored" WHERE "book_id" = (

SELECT "id" FROM "books" WHERE "title" = 'The Birthday Party'
)
);
-- Find all books by Fernanda Melchor, using IN
SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor';

SELECT "book_id" FROM "authored" WHERE "author_id" = (
SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'
);

SELECT "title" FROM "books" WHERE "id" IN (
SELECT "book_id" FROM "authored" WHERE "author_id" = (



nested.sql

43
44
45
46
47
48
49
50
51
52

);

SELECT "id" FROM "authors" WHERE "name" = 'Fernanda Melchor'

-- Using IN to search for multiple authors
SELECT "title" FROM "books" WHERE "id" IN (

SELECT "book_id" FROM "authored" WHERE "author_id" IN (
SELECT "id" FROM "authors" WHERE "name" IN ('Fernanda Melchor'

’

'"Annie Ernaux')



sets.sql

O N O O h W IN =

A A DA WWWWWWWWWWNRNRNNNNONDNONNNNS 2 2 2 o o oo
N = ©® WO U RWN—=©WOWOWNOUNWN-=O©WOWOW-NOOU A WN= O

-- UNION

-- Select all authors, labeling as authors
SELECT 'author' AS "profession", "name" FROM "authors";

-- Select all translators, labeling as translators
SELECT 'translator' AS "profession", "name" FROM "translators";

-- Combine authors and translators into one result set

SELECT 'author' AS "profession", "name" FROM "authors";

UNION

SELECT 'translator' AS "profession", "name" FROM "translators";

-- INTERSECT
-- Assume names are unique

-- Find authors and translators
SELECT "name" FROM "authors"
INTERSECT

SELECT "name" FROM "translators";

-- Find books translated by Sophie Hughes

SELECT "book_id" FROM "translated" WHERE "translator_id" = (
SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'

);

-- Find books translated by Margaret Jull Costa
SELECT "book_id" FROM "translated" WHERE "translator_id" = (

SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
);

-- Find intersection of books
SELECT "book_id" FROM "translated" WHERE "translator_id" = (
SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'
)
INTERSECT
SELECT "book_id" FROM "translated" WHERE "translator_id" = (
SELECT "id" FROM "translators" WHERE name = 'Margaret Jull Costa'
);

-- Find intersection of books
SELECT "title" FROM "books" WHERE "id" = (



sets.sql

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

SELECT "book_id" FROM "translated" WHERE "translator_id" = (
SELECT "id" FROM "translators" WHERE name = 'Sophie Hughes'

)
INTERSECT

SELECT "book_id" FROM "translated" WHERE "translator_id" = (

SELECT "id" FROM "translators" WHERE name
)3
-- EXCEPT

-- Assume names are unique

-- Find translators who are not authors
SELECT "name" FROM "translators"

EXCEPT

SELECT "name" FROM "authors";

'Margaret Jull Costa'



	groups.sql
	joins.sql
	nested.sql
	sets.sql

