
 1 -- Demonstrates views for aggregating data
 2 -- Uses longlist.db
 3
 4 -- Views ratings table
 5 SELECT * FROM "ratings";
 6
 7 -- Returns book IDs and unrounded ratings
 8 SELECT "book_id", AVG("rating") AS "rating" FROM "ratings"
 9 GROUP BY "book_id";
10
11 -- Returns book IDs and rounded ratings
12 SELECT "book_id", ROUND(AVG("rating"), 2) AS "rating" FROM "ratings"
13 GROUP BY "book_id";
14
15 -- Adds book IDs, rounded ratings, title, and year columns
16 SELECT "book_id", "title", "year", ROUND(AVG("rating"), 2) AS "rating" FROM "ratings"
17 JOIN "books" ON "ratings"."book_id" = "books"."id"
18 GROUP BY "book_id";
19
20 -- Defines book IDs, rounded ratings, title, and year columns as a view
21 CREATE VIEW "average_book_ratings" AS
22 SELECT "book_id" AS "id", "title", "year", ROUND(AVG("rating"), 2) AS "rating" FROM "ratings"
23 JOIN "books" ON "ratings"."book_id" = "books"."id"
24 GROUP BY "book_id";
25
26 -- Finds average book ratings by year nominated
27 SELECT "year", ROUND(AVG("rating"), 2) AS "rating" FROM "average_book_ratings"
28 GROUP BY "year";
29
30 -- Creates temporary view of average ratings by year
31 CREATE TEMPORARY VIEW "average_ratings_by_year" ("year", "rating") AS
32 SELECT "year", ROUND(AVG("rating"), 2) AS "rating" FROM "average_book_ratings"
33 GROUP BY "year";
34
35 -- Drops the view "average_book_ratings"
36 DROP VIEW "average_book_ratings";
37
38 -- Shows that CTEs are views accessible for the duration of a query
39 WITH "average_book_ratings" AS (
40 SELECT "book_id", "title", "year", ROUND(AVG("rating"), 2) AS "rating" FROM "ratings"
41 JOIN "books" ON "ratings"."book_id" = "books"."id"
42 GROUP BY "book_id"

aggregating.sql

43),
44 SELECT "year" ROUND(AVG("rating"), 2) AS "rating" FROM "average_book_ratings"
45 GROUP BY "year";

aggregating.sql

 1 -- Demonstrates views for partitioning data
 2 -- Uses longlist.db
 3
 4 -- Queries for 2022 longlisted books
 5 SELECT "id", "title" FROM "books"
 6 WHERE "year" = 2022;
 7
 8 -- Creates view of 2022 longlisted books
 9 CREATE VIEW "2022" AS
10 SELECT "id", "title" FROM "books"
11 WHERE "year" = 2022;
12
13 -- Queries for 2021 longlisted books
14 SELECT "id", "title" FROM "books"
15 WHERE "year" = 2021;
16
17 -- Creates view of 2021 longlisted books
18 CREATE VIEW "2021" AS
19 SELECT "id", "title" FROM "books"
20 WHERE "year" = 2021;

partitioning.sql

 1 -- Demonstrates views for securing data
 2 -- Uses rideshare.db
 3
 4 CREATE TABLE "rides" (
 5 "id" INTEGER,
 6 "origin" TEXT NOT NULL,
 7 "destination" INTEGER NOT NULL,
 8 "rider" TEXT NOT NULL,
 9 PRIMARY KEY("id")
10);
11
12 INSERT INTO "rides" ("origin", "destination", "rider")
13 VALUES
14 ('Good Egg Galaxy', 'Honeyhive Galaxy', 'Peach'),
15 ('Castle Courtyard', 'Cascade Kingdom', 'Mario'),
16 ('Metro Kingdom', 'Mushroom Kingdom', 'Luigi'),
17 ('Seaside Kingdom', 'Deep Woods', 'Bowser');
18
19 -- Reveals all rides information
20 SELECT * FROM "rides";
21
22 -- Reveals only subset of columns
23 SELECT "id", "origin", "destination" FROM "rides";
24
25 -- Makes clear that rider is anonymous
26 SELECT "id", "origin", "destination", 'Anonymous' AS "rider" FROM "rides";
27
28 -- Creates a view
29 CREATE VIEW "analysis" AS
30 SELECT "id", "origin", "destination", 'Anonymous' AS "rider" FROM "rides";
31
32 -- Queries the view
33 SELECT "origin", "destination", "rider" FROM "analysis";

securing.sql

 1 -- Demonstrates views for simplifying data access
 2 -- Uses longlist.db
 3
 4 -- Finds books written by Fernanda Melchor
 5 SELECT "title" FROM "books"
 6 WHERE "id" IN (
 7 SELECT "book_id" FROM "authored"
 8 WHERE "author_id" = (
 9 SELECT "id" FROM "authors"
10 WHERE "name" = 'Fernanda Melchor'
11)
12);
13
14 -- Joins authors with their book titles
15 SELECT "name", "title" FROM "authors"
16 JOIN "authored" ON "authors"."id" = "authored"."author_id"
17 JOIN "books" ON "books"."id" = "authored"."book_id";
18
19 -- Creates a view from the query to join authors with their book titles
20 CREATE VIEW "longlist" AS
21 SELECT "name", "title" FROM "authors"
22 JOIN "authored" ON "authors"."id" = "authored"."author_id"
23 JOIN "books" ON "books"."id" = "authored"."book_id";
24
25 -- Returns first five rows from view
26 SELECT * FROM "longlist" LIMIT 5;
27
28 -- Finds books written by Fernanda Melchor, now using a view
29 SELECT "title" FROM "longlist" WHERE "name" = 'Fernanda Melchor';

simplifying.sql

 1 -- Demonstrates soft deletes
 2 -- Uses mfa.db
 3
 4 -- Views data in "collections" table
 5 SELECT * FROM "collections";
 6
 7 -- Views schema of collections table
 8 .schema collections
 9
10 -- Adds a "deleted" column to "collections" table
11 ALTER TABLE "collections" ADD COLUMN "deleted" INTEGER DEFAULT 0;
12
13 -- Views updated data in "collections table"
14 SELECT * FROM "collections";
15
16 -- Views updated schema of collections table
17 .schema collections
18
19 -- Instead of deleting an item, updates its deleted column to be 1
20 UPDATE "collections" SET "deleted" = 1 WHERE "title" = 'Farmers working at dawn';
21
22 -- Selects all items from collections that are not deleted
23 SELECT * FROM "collections" WHERE "deleted" = 0;
24
25 -- Creates a view to show only items in collections that are NOT deleted
26 CREATE VIEW "current_collections" AS
27 SELECT "id", "title", "accession_number", "acquired" FROM "collections" WHERE "deleted" = 0;
28
29 -- Selects from "current_collections" view to see non-deleted items
30 SELECT * FROM "current_collections";
31
32 -- Fails to delete an item from the view
33 DELETE FROM "current_collections" WHERE "title" = 'Imaginative landscape';
34
35 -- Creates trigger to delete items from a view
36 CREATE TRIGGER "delete"
37 INSTEAD OF DELETE ON "current_collections"
38 FOR EACH ROW
39 BEGIN
40 UPDATE "collections" SET "deleted" = 1 WHERE "id" = OLD."id";
41 END;
42

soft_delete.sql

43 -- Creates trigger to revert an item's deletion
44 CREATE TRIGGER "insert_when_exists"
45 INSTEAD OF INSERT ON "current_collections"
46 FOR EACH ROW
47 WHEN NEW."accession_number" IN (SELECT "accession_number" FROM "collections")
48 BEGIN
49 UPDATE "collections" SET "deleted" = 0 WHERE "accession_number" = NEW."accession_number";
50 END;
51
52 -- Creates trigger to insert a new item into collections
53 CREATE TRIGGER "insert_when_new"
54 INSTEAD OF INSERT ON "current_collections"
55 FOR EACH ROW
56 WHEN NEW."accession_number" NOT IN (SELECT "accession_number" FROM "collections")
57 BEGIN
58 INSERT INTO "collections" ("title", "accession_number", "acquired")
59 VALUES (NEW."title", NEW."accession_number", NEW."acquired");
60 END;

soft_delete.sql

	aggregating.sql
	partitioning.sql
	securing.sql
	simplifying.sql
	soft_delete.sql

